精英家教網 > 高中數學 > 題目詳情
函數y=f(x)的導函數y=f′(x)的圖象如圖所示,則f(x)的解析式可能是( 。
分析:選項A,導函數的圖象表示平行x軸的直線,選項B,導函數的圖象表示斜率為-1的直線,選項C,滿足題意,選項D,導函數的圖象表示拋物線或x軸所在直線,從而得到結論.
解答:解:選項A,f′(x)=a,表示平行x軸的直線,故不正確;
選項B,f′(x)=-x+1,表示斜率為-1的直線,故不正確;
選項C,f′(x)=2(x-a),滿足題意;
選項D,f′(x)=3ax2,表示拋物線或x軸所在直線,故不正確.
故選C.
點評:本題主要考查了導函數的求解,以及導函數的圖象等有關知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

1、已知函數y=f(x)的導函數y=f′(x)的圖象如下,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

10、已知f′(x)是函數y=f(x)的導函數,且y=f′(x)的圖象如圖所示,則函數y=f(x)的圖象可能是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數y=g(x)是函數y=f(x)的導函數,則稱函數y=f(x)是函數y=g(x)的原函數,例如y=x3是y=3x2的原函數,y=x3+1也是y=3x2的原函數,現請寫出函數y=2x4的一個原函數
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•東營一模)對于三次函數f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數y=f(x)的導數y=f'(x)的導數,若方程f''(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”;
定義:(2)設x0為常數,若定義在R上的函數y=f(x)對于定義域內的一切實數x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數y=f(x)的圖象關于點(x0,f(x0))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數f(x)的“拐點”A的坐標
(2)檢驗函數f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

科目:高中數學 來源: 題型:

對于三次函數f(x)=ax3+bx2+cx+d(a≠0),給出定義:設f'(x)是函數y=f(x)的導數,f''是f'(x)的導數,若方程f''(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.某同學經過探究發(fā)現:任何一個三次函數都有“拐點”;任何一個三次函數都有對稱中心,且“拐點”就是對稱中心.若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請你根據這一發(fā)現,求:
(1)函數f(x)=
1
3
x3-
1
2
x2+3x-
5
12
對稱中心為
(
1
2
,1)
(
1
2
,1)
;
(2)計算f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+f(
4
2011
)+…+f(
2010
2011
)
=
2010
2010

查看答案和解析>>

同步練習冊答案