A. | 2(1-$\frac{1}{{2}^{n}}$) | B. | 2(1+$\frac{1}{{2}^{n}}$) | C. | 2($\frac{1}{{2}^{n}}$-1) | D. | 2($\frac{1}{{2}^{n}}$+1) |
分析 由an+1-an=$\frac{1}{{2}^{n}}$,采用“累加法”,根據(jù)等比數(shù)列的前n項和公式,即可求得數(shù)列{an}的通項公式.
解答 解:由an+1-an=$\frac{1}{{2}^{n}}$,
a2-a1=$\frac{1}{2}$,
a3-a2=$\frac{1}{{2}^{2}}$,
a4-a3=$\frac{1}{{2}^{3}}$,
…
an-an-1=$\frac{1}{{2}^{n-1}}$,
累加得:an-a1=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}}$=$\frac{\frac{1}{2}-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n-1}}$,
∴an=2-$\frac{1}{{2}^{n-1}}$=2(1-$\frac{1}{{2}^{n}}$),
故選:A.
點評 本題考查根據(jù)遞推公式求數(shù)列的通項公式,考查“累加法”,等比數(shù)列前n項和公式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 既不是奇函數(shù)又不是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com