已知函數(shù).
(1)若在上的最大值為,求實數(shù)的值;
(2)若對任意,都有恒成立,求實數(shù)的取值范圍;
(3)在(1)的條件下,設(shè),對任意給定的正實數(shù),曲線 上是否存在兩點、,使得是以(為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?請說明理由。
(1)(2)(3)對任意給定的正實數(shù),曲線 上總存在兩點,使得是以(為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上
【解析】
試題分析:(1)由,得,
令,得或.
列表如下:
0 |
||||||
|
0 |
0 |
||||
極小值 |
極大值 |
∵,,,
即最大值為,. 4分
(2)由,得.
,且等號不能同時取,,
恒成立,即.
令,求導(dǎo)得,,
當時,,從而,
在上為增函數(shù),,. 8分
(3)由條件,,
假設(shè)曲線上存在兩點滿足題意,則只能在軸兩側(cè),
不妨設(shè),則,且.
是以(為坐標原點)為直角頂點的直角三角形,
, , 10分
是否存在等價于方程在且時是否有解.
①若時,方程為,化簡得,
此方程無解; 11分
②若時,方程為,即,
設(shè),則,
顯然,當時,,即在上為增函數(shù),
的值域為,即,
當時,方程總有解.
對任意給定的正實數(shù),曲線 上總存在兩點,使得是以(為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上. 14分
考點:函數(shù)最值及與之相關(guān)的不等式問題
點評:求函數(shù)最值通過函數(shù)導(dǎo)數(shù)求得極值,比較極值與閉區(qū)間的邊界值的大小得最值,不等式恒成立中求參數(shù)范圍的題目常采用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值的問題
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知函數(shù).
(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;(3)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)已知函數(shù),
(1)若,求的單調(diào)區(qū)間;
(2)當時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省岳陽市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若為的極值點,求實數(shù)的值;
(2)若在上為增函數(shù),求實數(shù)的取值范圍;
(3)當時,方程有實根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)。
(1)若,求函數(shù)的值;
(2)求函數(shù)的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
已知函數(shù).
(1)若從集合中任取一個元素,從集合中任取一個元素,求方程有兩個不相等實根的概率;
(2)若是從區(qū)間中任取的一個數(shù),是從區(qū)間中任取的一個數(shù),求方程沒有實根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com