【題目】設函數(shù)

(1)討論的單調性;

(2)證明:當時,

【答案】(1)見解析 (2)見解析

【解析】

(1)先求函數(shù)定義域,由導數(shù)大于0,得增區(qū)間;導數(shù)小于0,得減區(qū)間;

(2)由題意可得即證lnxx﹣1<xlnx.由(1)的單調性可得lnxx﹣1;Fx)=xlnxx+1,x>1,求出單調性,即可得到x﹣1<xlnx成立;

(1)由題設,的定義域為,

,解得

時,單調遞增;

時,,單調遞減.

(2)證明:當x(1,+∞)時,,即為lnxx﹣1<xlnx

由(1)可得fx)=lnxx+1在(1,+∞)遞減,

可得fx)<f(1)=0,即有lnxx﹣1;

Fx)=xlnxx+1,x>1,F′(x)=1+lnx﹣1=lnx,

x>1時,F′(x)>0,可得Fx)遞增,即有Fx)>F(1)=0,

即有xlnxx﹣1,則原不等式成立;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖幾何體ADM-BCN中, 是正方形, , , .

(Ⅰ)求證: ;

(Ⅱ)求證: ;

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中, , , , 中點(如圖1).將沿折起到圖2中的位置,得到四棱錐.

(1)將沿折起的過程中, 平面是否成立?并證明你的結論;

(2)若與平面所成的角為60°,且為銳角三角形,求平面和平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(Ⅰ)求橢圓的方程.

(Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】按要求寫出下列命題,并判斷真假:

1)命題:中,若的逆命題;

2)命題:若兩個數(shù)的和為有理數(shù),則這兩個數(shù)都是有理數(shù)。的否命題;

3)命題:a≠0b≠0,ab≠0”的逆否命題;

4)命題:a=0b=0,a2+b2=0”的逆否命題;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調查某社區(qū)年輕人的周末生活狀況,研究這一社區(qū)年輕人在周末的休閑方式與性別的關系,隨機調查了該社區(qū)年輕人80人,得到下面的數(shù)據(jù)表:

(1)將此樣本的頻率估計為總體的概率,隨機調查3名在該社區(qū)的年輕男性,設調查的3人在這一時間段以上網為休閑方式的人數(shù)為隨機變量X,求X的分布列和數(shù)學期望;

(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認為周末年輕人的休閑方式與性別有關系”?

參考公式:

參考數(shù)據(jù):

0.05

0.010

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 天氣預報說明天下雨的概率為,則明天一定會下雨

B. 不可能事件不是確定事件

C. 統(tǒng)計中用相關系數(shù)來衡量兩個變量的線性關系的強弱,若則兩個變量正相關很強

D. 某種彩票的中獎率是,則買1000張這種彩票一定能中獎

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直三棱柱中,為等腰直角三角形,,且,分別為,,的中點.

(1)求證:直線平面

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為 為參數(shù)).以坐標原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.

(1)當時,求曲線上的點到直線的距離的最大值;

(2)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案