【題目】已知函數(shù).
(1)判斷的單調(diào)性;
(2)求函數(shù)的零點的個數(shù);
(3)令,若函數(shù)在(0,)內(nèi)有極值,求實數(shù)的取值范圍.
【答案】(1)單調(diào)遞增;(2)2;(3)
【解析】
試題分析:(1)首先表示出函數(shù)的解析式,然后根據(jù)導數(shù)判斷單調(diào)性即可;
(2)首先確定函數(shù)的定義域,并利用導數(shù)研究函數(shù)的單調(diào)性,結合函數(shù)的特殊值,由函數(shù)的零點存在性定理可判斷零點的個數(shù);
首先確定函數(shù)的定義域,化簡其解析式并求其導數(shù),根據(jù)可導函數(shù)極值存在的條件將問題轉化為的導數(shù)在(0,)內(nèi)有零點,然后再用一元二次方程根的分布理論去求解.
試題解析:(1)設,
,所以在上單調(diào)遞增;
由(1)知:,且在上單調(diào)遞增,
所以在上有一個零點,
又,顯然是的一個零點,
所以在上有兩個零點;
因為=,
所以,
設,
則有兩個不同的根,且一根在內(nèi),
不妨設,由于,所以,
由于,則只需,即
解得
科目:高中數(shù)學 來源: 題型:
【題目】某著名歌星在某地舉辦一次歌友會,有1000人參加,每人一張門票,每張100元.在演出過程中穿插抽獎活動,第一輪抽獎從這1000張票根中隨機抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動.第二輪抽獎由第一輪獲獎者獨立操作按鈕,電腦隨機產(chǎn)生兩個實數(shù)x,y(x,y∈[0,4]),若滿足y≥ ,電腦顯示“中獎”,則抽獎者再次獲得特等獎獎金;否則電腦顯示“謝謝”,則不獲得特等獎獎金.
(1)已知小明在第一輪抽獎中被抽中,求小明在第二輪抽獎中獲獎的概率;
(2)設特等獎獎金為a元,小李是此次活動的顧客,求小李參加此次活動獲益的期望;若該歌友會組織者在此次活動中獲益的期望值是至少獲得70000元,求a的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(2,0)及圓C:x2+y2﹣6x+4y+4=0.
(1)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設直線ax﹣y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若曲線在點處的切線與直線垂直,求實數(shù)的值;
(Ⅱ)若函數(shù)在其定義域上是增函數(shù),求實數(shù)的取值范圍;
(Ⅲ)當時,函數(shù)的兩個極值點為,且,若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a2=﹣5,S5=﹣20.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求使不等式Sn>an成立的n的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且sinA+cosA=2.
(Ⅰ)求角A的大;
(Ⅱ)現(xiàn)給出三個條件:①a=2;②B=45°;③c= .試從中選出兩個可以確△ABC的條件,寫出你的選擇,并以此為依據(jù)求△ABC的面積.(只寫出一個方案即可)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一批材料可以建成80m的圍墻,若用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的小矩形(如圖所示),且圍墻厚度不計,則圍成的矩形的最大面積為( )
A.200m2
B.360m2
C.400m2
D.480m2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“斐波那契數(shù)列”是數(shù)學史上一個著名數(shù)列,在斐波那契數(shù)列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)則a8=;若a2018=m2+1,則數(shù)列{an}的前2016項和是 . (用m表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com