【題目】已知正三棱柱ABC﹣A1B1C1的各個(gè)棱長(zhǎng)都相等,E為BC的中點(diǎn),動(dòng)點(diǎn)F在CC1上,且不與點(diǎn)C重合
(1)當(dāng)CC1=4CF時(shí),求證:EF⊥A1C
(2)設(shè)二面角C﹣AF﹣E的大小為α,求tanα的最小值.
【答案】
(1)證明:過E作EN⊥AC于N,連接EF,NF,AC1,
由直棱柱的性質(zhì)可知,底面ABC⊥側(cè)面A1C,
∴EN⊥側(cè)面A1C,NF為EF在側(cè)面A1C內(nèi)的射影,
設(shè)正三棱柱ABC﹣A1B1C1的各個(gè)棱長(zhǎng)為4,
∵CC1=4CF,∴在直角三角形CNF中,CN=1,
則由 = = ,得NF∥AC1,
又AC1⊥A1C,故NF⊥A1C,
由三垂線定理可知EF⊥A1C
(2)解:連接AF,過N作NM⊥AF于M,連接ME
由(I)可知EN⊥側(cè)面A1C,根據(jù)三垂線定理得EM⊥AF
∴∠EMN是二面角C﹣AF﹣E的平面角即∠EMN=α,
設(shè)∠FAC=θ,則0°<θ≤45°,
在直角三角形CNE中,NE= ,
在直角三角形AMN中,MN=3sinθ
故tanα= ,又0°<θ≤45°,∴0<sinθ≤
故當(dāng)θ=45°時(shí),tanα達(dá)到最小值,
∴tanα的最小值為anα= .
【解析】(1)過E作EN⊥AC于N,連接EF,NF,AC1 , 則EN⊥側(cè)面A1C,NF為EF在側(cè)面A1C內(nèi)的射影,設(shè)正三棱柱ABC﹣A1B1C1的各個(gè)棱長(zhǎng)為4,則CN=1,NF∥AC1 , 推導(dǎo)出C1⊥A1C,NF⊥A1C,由此能證明EF⊥A1C.(2)連接AF,過N作NM⊥AF于M,連接ME,則EN⊥側(cè)面A1C,根據(jù)三垂線定理得EM⊥AF,∠EMN是二面角C﹣AF﹣E的平面角由此能示出tanα的最小值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí),掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖:
(1)如表是年齡的頻數(shù)分布表,求a,b的值;
區(qū)間 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人數(shù) | 50 | 50 | a | 150 | b |
(2)根據(jù)頻率分布直方圖估計(jì)志愿者年齡的平均數(shù)和中位數(shù);
(3)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的分別抽取多少人?
(4)在(3)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣2ax+b,當(dāng)x∈[0,3]時(shí),|f(x)|≤1恒成立,則2a+b的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)當(dāng)x∈[0, ]時(shí),求| + |的取值范圍;
(2)若g(x)=( + ) ,求當(dāng)k為何值時(shí),g(x)的最小值為﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 、 滿足| |=1,| |=2, 與 的夾角為60°.
(1)若(k ﹣ )⊥( + ),求k的值;
(2)若|k ﹣ |<2,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為CC1和BB1的中點(diǎn),則異面直線AE與D1F所成角的余弦值為( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖. (Ⅰ)求直方圖中a的值;
(Ⅱ)若該市有110萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),請(qǐng)說明理由;
(Ⅲ)若該市政府希望使80%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sinx,﹣2cosx), =(sinx+ cosx,﹣cosx),x∈R.函數(shù)f(x)= .
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六組[40,50),[50,60)[90,100]后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ) 求成績(jī)落在[70,80)上的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ) 估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 設(shè)學(xué)生甲、乙的成績(jī)屬于區(qū)間[40,50),現(xiàn)從成績(jī)屬于該區(qū)間的學(xué)生中任選兩人,求甲、乙中至少有一人被選的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com