【題目】為了解某校高三學生的視力情況,隨機地抽查了該校100名高三學生的視力情況,得到頻率分布直方圖如下圖,由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,視力在4.65.0之間的學生數(shù)為b,則a,b的值分別為 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

【答案】A

【解析】試題分析:由頻率分布直方圖知組矩為0.1,4.34.4間的頻數(shù)為100×0.1×0.1=14.44.5間的頻數(shù)為100×0.1×0.3=3.又前4組的頻數(shù)成等比數(shù)列,公比為3.根據(jù)后6組頻數(shù)成等差數(shù)列,且共有100-13=87人.從而4.64.7間的頻數(shù)最大,且為1×33=27a=0.27,設(shè)公差為d,則6×27+d=87d=-5,從而b=4×27+-5=78.故選:A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求的值;

2)過是否存在既是曲線的切線,又是曲線的切線?如果存在,求出直線方程;若果不存在請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某大學聯(lián)盟的自主招生考試中,報考文史專業(yè)的考生參加了人文基礎(chǔ)學科考試科目語文數(shù)學的考試.某考場考生的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,本次考試中成績在內(nèi)的記為,其中語文科目成績在內(nèi)的考生有10人.

1)求該考場考生數(shù)學科目成績?yōu)?/span>的人數(shù);

2)已知參加本考場測試的考生中,恰有2人的兩科成績均為.在至少一科成績?yōu)?/span>的考生中,隨機抽取2人進行訪談,求這2人的兩科成績均為的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列給出四組函數(shù),表示同一函數(shù)的是(
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=2x+1,g(x)=2x﹣1
C.f(x)=|x|,g(x)=
D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:),[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.

(1)求直方圖中x的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】河南多地遭遇跨年霾,很多學校調(diào)整元旦放假時間,提前放假讓學生們在家里躲霾,鄭州市根據(jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預警升級為紅色預警的通知》.自12月29日12時將黃色預警升級為紅色預警,12月30日0時啟動I級響應(yīng),明確要求:“幼兒園、中小學等教育機構(gòu)停課,停課不停學”,學生和家長對停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學習不贊成的.某調(diào)查機構(gòu)為了了解公眾對該舉措的態(tài)度,隨機調(diào)查采訪了50人,將調(diào)查情況整理匯總成下表:

年齡(歲)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

9

6

3

4

(1)請補全被調(diào)查人員年齡的頻率分布直方圖;

(2)若從年齡在的被調(diào)查者中分別隨機選取一人進行追蹤調(diào)查,求這兩人都贊成“停課”這一舉措的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中, 平面分別為的中點, 是邊長為的正三角形, .

(1)證明: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= (a,b為常數(shù))是定義在(﹣1,1)上的奇函數(shù),且f( )=
(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(﹣1,1)上是增函數(shù)并求值域;
(3)求不等式f(2t﹣1)+f(t)<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點的直線與中心在原點,焦點在軸上且離心率為的橢圓相交于、兩點,直線過線段的中點,同時橢圓上存在一點與右焦點關(guān)于直線對稱.

(1)求直線的方程;

(2)求橢圓的方程.

查看答案和解析>>

同步練習冊答案