已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P),設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),…。如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓。特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點,
(Ⅰ)若點P(x,y)在映射f下的象為點Q(2x,1-y),
①求映射f下不動點的坐標;
②若P1的坐標為(1,2),判斷點Pn(xn,yn)(n∈N*)是否存在一個半徑為3的收斂圓,并說明理由;
(Ⅱ)若點P(x,y)在映射f下的象為點,P1(2,3),求證:點Pn(xn,yn)(n∈N*)存在一個半徑為的收斂圓。
(Ⅰ)①解:設不動點的坐標為
由題意,得,解得,
所以映射f下不動點為
②結論:點Pn(xn,yn)不存在一個半徑為3的收斂圓。
證明:由,得,
所以,
則點P1,P4不可能在同一個半徑為3的圓內(nèi),
所以點Pn(xn,yn)(n∈N*)不存在一個半徑為3的收斂圓。
(Ⅱ)證明:由,得,
,得,
所以
,得
所以,
,
,得,同理,
所以,
所以數(shù)列都是公比為的等比數(shù)列,首項分別為,
所以,
同理可得,
所以對任意n∈N*,
設A(3,1),則,
所以,
故所有的點都在以A(3,1)為圓心,為半徑的圓內(nèi)或圓上,
即點存在一個半徑為的收斂圓。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P).設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓.特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點.若點P(x,y)在映射f下的象為點Q(-x+1,
12
y)

(Ⅰ)求映射f下不動點的坐標;
(Ⅱ)若P1的坐標為(2,2),求證:點Pn(xn,yn)(n∈N*)存在一個半徑為2的收斂圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P).
設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓.特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點.
(Ⅰ) 若點P(x,y)在映射f下的象為點Q(2x,1-y).
①求映射f下不動點的坐標;
②若P1的坐標為(1,2),判斷點Pn(xn,yn)(n∈N*)是否存在一個半徑為3的收斂圓,并說明理由.
(Ⅱ) 若點P(x,y)在映射f下的象為點Q(
x+y
2
+1,
x-y
2
)
,P1(2,3).求證:點Pn(xn,yn)(n∈N*)存在一個半徑為
5
的收斂圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年西城區(qū)抽樣文)(14分)

   已知f是直角坐標平面xOy到自身的一個映射,點在映射f下的象為點,記作.

,. 如果存在一個圓,使所有的點都在這個圓內(nèi)或圓上,那么稱這個圓為點的一個收斂圓. 特別地,當時,則稱點為映射f下的不動點.

若點在映射f下的象為點.     

(Ⅰ) 求映射f下不動點的坐標;

     (Ⅱ) 若的坐標為(2,2),求證:點存在一個半徑為2的收斂圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年西城區(qū)抽樣理)(14分)

   已知f是直角坐標平面xOy到自身的一個映射,點在映射f下的象為點,記作.

,,. 如果存在一個圓,使所有的點都在這個圓內(nèi)或圓上,那么稱這個圓為點的一個收斂圓. 特別地,當時,則稱點為映射f下的不動點.

    (Ⅰ) 若點在映射f下的象為點.

  1 求映射f下不動點的坐標;

  2 若的坐標為(1,2),判斷點是否存在一個半徑為3的收斂圓,并說明理由.

(Ⅱ) 若點在映射f下的象為點,(2,3). 求證:點存在一個半徑為的收斂圓.

查看答案和解析>>

同步練習冊答案