分析 分類討論,設(shè)出圓心坐標(biāo),利用兩圓的圓心距是3$\sqrt{2}$,求出圓心與半徑,即可求圓C2的方程.
解答 解:由題意知,圓C2的圓心C2在直線y=x或y=-x上.
(1)設(shè)C2(a,a).因?yàn)閮蓤A的圓心距是3$\sqrt{2}$,即C2(a,a)與C1(1,1)的距離是3$\sqrt{2}$,所以$\sqrt{2(a-1)^{2}}$=3$\sqrt{2}$,解得a=4或a=-2,…(6分)
此時(shí)圓C2的方程是(x-4)2+(y-4)2=16或(x+2)2+(y+2)2=4.
(2)設(shè)C2(b,-b).因?yàn)镃2(b,-b)與C1(1,1)的距離是3$\sqrt{2}$,
所以$\sqrt{(b-1)^{2}+(b+1)^{2}}$=3$\sqrt{2}$,解得b=$±2\sqrt{2}$.
此時(shí)圓C2的方程是(x-2$\sqrt{2}$)2+(y+2$\sqrt{2}$)2=8或(x+2$\sqrt{2}$)2+(y-2$\sqrt{2}$)2=8.
故圓C2的方程(x-4)2+(y-4)2=16或(x+2)2+(y+2)2=4或(x-2$\sqrt{2}$)2+(y+2$\sqrt{2}$)2=8或(x+2$\sqrt{2}$)2+(y-2$\sqrt{2}$)2=8.…(12分)
點(diǎn)評(píng) 本題考查圓的方程,考查圓與圓的位置關(guān)系,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{3}$-y2=1 | B. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1 | C. | $\frac{{y}^{2}}{3}$-x2=1 | D. | $\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{2}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-25,-$\frac{1}{2}$] | B. | [-5,-$\frac{1}{2}$] | C. | [-25,-1] | D. | [-5,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com