設(shè)點(diǎn)M(m,0)在橢圓=1的長(zhǎng)軸上,點(diǎn)P是橢圓上任意一點(diǎn).當(dāng)的模最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),則實(shí)數(shù)m的取值范圍
A.[0,4]
B.[1,4]
C.[1,5]
D.[3,4]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:走向清華北大同步導(dǎo)讀·高二數(shù)學(xué)(上) 題型:022
(-3,0)、(3,0)是橢圓=1的兩個(gè)焦點(diǎn),P在橢圓上,∠P=?,且當(dāng)??=時(shí),?P的面積最大,則m=________,n=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:福建省四地六校聯(lián)考2010-2011學(xué)年高二第三次月考數(shù)學(xué)文科試題 題型:044
已知直線x+y-1=0與橢圓=1(a>b>0)相交于A、B兩點(diǎn),M是線段AB上的一點(diǎn),=-,且點(diǎn)M在直線l:y=x上
(1)求橢圓的離心率;
(2)若橢圓的焦點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)在單位圓x2+y2=1上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市徐匯區(qū)2010屆高三第二次模擬考試數(shù)學(xué)理科試題 題型:044
設(shè)P(a,b)(a·b≠0)、R(a,2)為坐標(biāo)平面xoy上的點(diǎn),直線OR(O為坐標(biāo)原點(diǎn))與拋物線y2=x交于點(diǎn)Q(異于O).
(1)若對(duì)任意ab≠0,點(diǎn)Q在拋物線y=mx2+1(m≠0)上,試問當(dāng)m為何值時(shí),點(diǎn)P在某一圓上,并求出該圓方程M;
(2)若點(diǎn)P(a,b)(ab≠0)在橢圓x2+4y2=1上,試問:點(diǎn)Q能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3)對(duì)(1)中點(diǎn)P所在圓方程M,設(shè)A、B是圓M上兩點(diǎn),且滿足|OA|·|OB|=1,試問:是否存在一個(gè)定圓S,使直線AB恒與圓S相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省臺(tái)州市四校2012屆高三第一次聯(lián)考數(shù)學(xué)理科試題 題型:044
橢圓過點(diǎn)P,且離心率為,F(xiàn)為橢圓的右焦點(diǎn),M、N兩點(diǎn)在橢圓C上,且=λ(λ>0),定點(diǎn)A(-4,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)λ=1時(shí),問:MN與AF是否垂直;并證明你的結(jié)論.
(Ⅲ)當(dāng)M、M兩點(diǎn)在C上運(yùn)動(dòng),且·tan∠MAN=6時(shí),求直線MN的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com