下列說法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
既是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),則當(dāng)x∈R時(shí),f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數(shù);
其中所有正確命題的序號(hào)是(    )。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①函數(shù)f(x)=
x-1
x+1
與g(x)=x的圖象沒有公共點(diǎn);
②若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則函數(shù)f(x)周期為6;
③若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
④函數(shù)y=log2(x2-ax-a)的值域?yàn)镽,則a∈(-4,0);
其中正確命題的序號(hào)為
 
(把所有正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①函數(shù)f(x)=
x-1
x+1
與g(x)=x的圖象沒有公共點(diǎn);
②若定義在R上的函數(shù)f(x)滿足f(x+3)=-f(x),則6為函數(shù)f(x)的周期;
③若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3

④定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函.
則其中正確的是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
③若函數(shù)f(x)=|2x+a|的單調(diào)遞增區(qū)間是[3,+∞),則a=-6;
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數(shù).
其中正確說法的序號(hào)是
①③④
①③④
(注:把你認(rèn)為是正確的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0110 期中題 題型:填空題

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
③如果在[-1,∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍是(-8,-6];
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數(shù);
其中正確說法的序號(hào)是(    )(注:把你認(rèn)為是正確的序號(hào)都填上)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:

①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;

②f(x)表示 -2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;

③如果在[-1,∞上是減函數(shù),則實(shí)數(shù)a的取值范圍是(-8,-6;

④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足

f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數(shù).

其中正確說法的序號(hào)是____________________(注:把你認(rèn)為是正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊答案