若點(diǎn)M(2, m) (m<0) 到直線l:5x-12y+n=0的距離是4,且直線l在y軸上的截距為,則m+n=      .

 

【答案】

3

【解析】由直線l在y軸上的截距為可知,

又由點(diǎn)到直線的距離公式可得

.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AD∥BC,DA⊥AB,AD=3,AB=4,BC=
3
,點(diǎn)E在線段AB的延長(zhǎng)線上.若曲線段DE(含兩端點(diǎn))為某曲線L上的一部分,且曲線L上任一點(diǎn)到A、B兩點(diǎn)的距離之和都相等.
(1)建立恰當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線L的方程;
(2)根據(jù)曲線L的方程寫出曲線段DE(含兩端點(diǎn))的方程;
(3)若點(diǎn)M為曲線段DE(含兩端點(diǎn))上的任一點(diǎn),試求|MC|+|MA|的最小值,并求出取得最小值時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=4x,點(diǎn)M(m,0)在x軸的正半軸上,過(guò)M的直線l與C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問(wèn)是否存在定點(diǎn)M,不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省溫州市高二第一次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

若點(diǎn)M(2, m) (m<0)到直線l:5x-12y+n=0的距離是4,且直線l在y軸上,的截距為,則m+n=      .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省高二期中理科數(shù)學(xué)試卷 題型:填空題

若點(diǎn)M(2, m) (m<0=到直線l:5x-12y+n=0的距離是4,且直線l在y軸上的截距為,則m+n=   ▲  

 

查看答案和解析>>

同步練習(xí)冊(cè)答案