精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.
分析:本題考查矩陣的變換中的伸壓變換,橫坐標(biāo)、縱坐標(biāo)拉伸和壓縮變換與矩陣中數(shù)的對應(yīng)關(guān)系;逆矩陣變換公式
解答:精英家教網(wǎng)解:A、證明:如圖,連接OP、BP.
∵AB是⊙O的直徑,∴∠APB=90°.
又∵CE=BE,∴EP=EB.∴∠3=∠1.
∵OP=OB,∴∠4=∠2.
∵BC切⊙O于點B,∴∠1+∠2=90°.
∠3+∠4=90°.
又∵OP為⊙O的半徑,
∴PE是⊙O的切線.
B、(1)由條件得矩陣M=
20
03
,
它的特征值為2和3,對應(yīng)的特征向量為
1
0
0
1

(2)M-1=
1
2
0
0
1
3
,
橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程為x2+y2=1.
C、解:(Ⅰ)x2+y2-4x-4y+6=0;
x=2+
2
cosα
y=2+
2
sinα
(α為參數(shù))

(Ⅱ)x+y=4+2sin(α+
π
4
)最大值6,最小值2.

D、解:a小于|x+2|+|x-1|的最小值即可,
而t=|x+2|+|x-1|≥|(x+2)-(x-1)|=3,
tmin=3,
只要a≤3.
點評:矩陣變換的幾種形式,特征值與特征向量的對應(yīng)關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答題紙指定區(qū)域內(nèi) 作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D、E.求∠DAC的度數(shù)與線段AE的長.
B.已知二階矩陣A=
2a
b0
屬于特征值-1的一個特征向量為
1
-3
,求矩陣A的逆矩陣.

C.已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點,極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈{R}).試求曲線C上點M到直線l的距離的最大值.
D.(1)設(shè)x是正數(shù),求證:(1+x)(1+x2)(1+x3)≥8x3;
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請給出證明;如果不成立,請舉出一個使它不成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.
A選修4-1:幾何證明選講
如圖,延長⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點,過點B作DE的垂線,垂足為點C.
求證:∠ACB=
1
3
∠OAC.
B選修4-2:矩陣與變換
已知矩陣A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C選修4-3:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
a
3cos2θ+4sin2θ
,焦距為2,求實數(shù)a的值.
D選修4-4:不等式選講
已知函數(shù)f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c為實數(shù))的最小值為m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
N點的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實數(shù)a,b的值;
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設(shè)a,b,c均為正實數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,PA切⊙O于點A,D為PA的中點,過點D引割線交⊙O于B、C兩點.求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
設(shè)M=
.
10
02
.
,N=
.
1
2
0
01
.
,試求曲線y=sinx在矩陣MN變換下的曲線方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 選做題(在A、B、C、D四小題中只能選做兩題,并將選作標(biāo)記用2B鉛筆涂黑,每小題10分,共20分,請在答題指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟).
A、(選修4-1:幾何證明選講)
如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,求證:AB2=AE•AD
B、(選修4-2:矩形與變換)
已知a,b實數(shù),如果矩陣M=
1a
b2
所對應(yīng)的變換將直線3x-y=1變換成x+2y=1,求a,b的值.
C、(選修4-4,:坐標(biāo)系與參數(shù)方程)
設(shè)M、N分別是曲線ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的動點,判斷兩曲線的位置關(guān)系并求M、N間的最小距離.
D、(選修4-5:不等式選講)
設(shè)a,b,c是不完全相等的正數(shù),求證:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

同步練習(xí)冊答案