3.下列極坐標(biāo)方程中,對應(yīng)的曲線為如圖所示的是( 。
A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6-5cosθD.ρ=6-5sinθ

分析 由圖形可知:$θ=-\frac{π}{2}$時,ρ取得最大值,即可判斷出結(jié)論.

解答 解:由圖形可知:$θ=-\frac{π}{2}$時,ρ取得最大值,
只有D滿足上述條件.
故選:D.

點評 本題考查了極坐標(biāo)方程、數(shù)形結(jié)合方法、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.與$\frac{π}{3}$終邊相同的角的集合是{α|α=2kπ+$\frac{π}{3}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和Sn=1+λan,其中λ≠0.
(1)證明{an}是等比數(shù)列,并求其通項公式;
(2)若S5=$\frac{31}{32}$,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在等差數(shù)列{an}中,若an=8-3n.
(1)求{an}前n項之和Sn;
(2)求數(shù)列{|an|}的前10項之和T10;
(3)求數(shù)列{|an|}的前n項之和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在正四棱柱ABCD-A1B1C1D1中,底面ABCD的邊長為3,BD1與底面所成角的大小為arctan$\frac{2}{3}$,則該正四棱柱的高等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若無窮數(shù)列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,則稱{an}具有性質(zhì)P.
(1)若{an}具有性質(zhì)P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若無窮數(shù)列{bn}是等差數(shù)列,無窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c5=1;b5=c1=81,an=bn+cn,判斷{an}是否具有性質(zhì)P,并說明理由;
(3)設(shè){bn}是無窮數(shù)列,已知an+1=bn+sinan(n∈N*),求證:“對任意a1,{an}都具有性質(zhì)P”的充要條件為“{bn}是常數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在50瓶飲料中,有3瓶已經(jīng)過期,從中任取一瓶,取到已過期飲料的概率是$\frac{3}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知(x+1)2(x+2)2011=a0+a1(x+2)+a2(x+2)2+…+a2013(x+2)2013,求$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$+…+$\frac{{a}_{2013}}{{2}^{2013}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.i是虛數(shù)單位,復(fù)數(shù)z滿足(1+i)z=2,則z的實部為1.

查看答案和解析>>

同步練習(xí)冊答案