【題目】已知集合M={x|x2﹣3x﹣18≤0},N={x|1﹣a≤x≤2a+1}.
(1)若a=3,求M∩N和RN;
(2)若MN,求實數(shù)a的取值范圍.
【答案】
(1)解:集合M={x|x2﹣3x﹣18≤0}={x|﹣3≤x≤6},
當a=3時,N={x|﹣2≤x≤7};
所以M∩N={x|﹣2≤x≤6}
RN={x|x<﹣2或x>7}
(2)解:因為MN,
所以{x|﹣3≤x≤6}{x|1﹣a≤x≤2a+1},
所以
所以a≥4
【解析】(1)化簡集合M、求出a=3時集合N,再計算M∩N與RN;(2)根據(jù)子集的概念,列出關于a的不等式組,求出a的取值范圍.
【考點精析】認真審題,首先需要了解交、并、補集的混合運算(求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法).
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①由樣本數(shù)據(jù)得到的回歸方程 必過樣本點的中心( , );
②用相關指數(shù)R2來刻畫回歸效果,R2的值越小,說明模型的擬合效果越好;
③若線性回歸方程為 =3﹣2.5x,則變量x每增加1個單位時,y平均減少2.5個單位;
④在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越窄,殘差平方和越。
上述四個命題中,正確命題的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,
得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的頂點A(0,1),AB邊上的中線CD所在的直線方程為2x﹣2y﹣1=0,AC邊上的高BH所在直線的方程為y=0.
(1)求△ABC的頂點B、C的坐標;
(2)若圓M經(jīng)過不同的三點A、B、P(m,0),且斜率為1的直線與圓M相切于點P,求圓M的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)對都滿足且,設函數(shù)(, ).
(Ⅰ)求的表達式;
(Ⅱ)若,使成立,求實數(shù)m的取值范圍;
(Ⅲ)設, ,求證:對于
恒有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),設關于的方程有個不同的實數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x+m21﹣x .
(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是單調遞增函數(shù),求實數(shù)m的取值范圍;
(3)是否存在實數(shù)a,使得函數(shù)f(x)的圖象關于點A(a,0)對稱,若存在,求實數(shù)a的值,若不存在,請說明理由.
注:點M(x1 , y1),N(x2 , y2)的中點坐標為( , ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】請閱讀下列材料:若兩個正實數(shù)a1 , a2滿足a12+a22=1,那么a1+a2≤ .
證明:構造函數(shù)f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因為對一切實數(shù)x , 恒有f(x)≥0,所以Δ≤0,從而得4(a1+a2)2-8≤0,所以a1+a2≤ .
根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你能得到的結論為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com