【題目】2018年4月4日召開的國務(wù)院常務(wù)會(huì)議明確將進(jìn)一步推動(dòng)網(wǎng)絡(luò)提速降費(fèi)工作落實(shí),推動(dòng)我國數(shù)字經(jīng)濟(jì)發(fā)展和信息消費(fèi),今年移動(dòng)流量資費(fèi)將再降以上,為響應(yīng)國家政策,某通訊商計(jì)劃推出兩款優(yōu)惠流量套餐,詳情如下:
套餐名稱 | 月套餐費(fèi)/元 | 月套餐流量/M |
A | 30 | 3000 |
B | 50 | 6000 |
這兩款套餐均有以下附加條款:套餐費(fèi)用月初一次性收取,手機(jī)使用流量一旦超出套餐流量,系統(tǒng)就會(huì)自動(dòng)幫用戶充值流量,資費(fèi)20元;如果又超出充值流量,系統(tǒng)再次自動(dòng)幫用戶充值流量,資費(fèi)20元,以此類推.此外,若當(dāng)月流量有剩余,系統(tǒng)將自動(dòng)清零,不可次月使用.
小張過去50個(gè)月的手機(jī)月使用流量(單位:M)的頻數(shù)分布表如下:
月使用流量分組 | ||||||
頻數(shù) | 4 | 5 | 11 | 16 | 12 | 2 |
根據(jù)小張過去50個(gè)月的手機(jī)月使用流量情況,回答以下幾個(gè)問題:
(1)若小張選擇A套餐,將以上頻率作為概率,求小張?jiān)谀骋粋(gè)月流量費(fèi)用超過50元的概率;
(2)小張擬從A或B套餐中選定一款,若以月平均費(fèi)用作為決策依據(jù),他應(yīng)訂哪一種套餐?說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),作出函數(shù)的圖象;
(2)是否存在實(shí)數(shù)a,使得函數(shù)在區(qū)間上有最小值8,若存在求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)f(x)的定義域,判斷并證明函數(shù)f(x)的奇偶性;
(Ⅱ)是否存在這樣的實(shí)數(shù)k,使f(k-x2)+f(2k-x4)≥0對一切恒成立,若存在,試求出k的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新個(gè)稅法于2019年1月1日進(jìn)行實(shí)施.為了調(diào)查國企員工對新個(gè)稅法的滿意程度,研究人員在地各個(gè)國企中隨機(jī)抽取了1000名員工進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中.
(1)求的值并估計(jì)被調(diào)查的員工的滿意程度的中位數(shù);(計(jì)算結(jié)果保留兩位小數(shù))
(2)若按照分層抽樣從,中隨機(jī)抽取8人,再從這8人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形理論是當(dāng)今世界十分風(fēng)靡和活躍的新理論、新學(xué)科。其中,把部分與整體以某種方式相似的形體稱為分形。分形是一種具有自相似特性的現(xiàn)象,圖象或者物理過程。標(biāo)準(zhǔn)的自相似分形是數(shù)學(xué)上的抽象,迭代生成無限精細(xì)的結(jié)構(gòu)。也就是說,在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出的,按照如下規(guī)律依次在一個(gè)黑色三角形內(nèi)去掉小三角形則當(dāng)時(shí),該黑色三角形內(nèi)共去掉( )個(gè)小三角形
A. 81 B. 121 C. 364 D. 1093
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時(shí), ;當(dāng)時(shí), .
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時(shí)的最大值.
【試題解析】
(Ⅰ),
設(shè) ,則.
∵, ,∴在上單調(diào)遞增,
從而得在上單調(diào)遞增,又∵,
∴當(dāng)時(shí), ,當(dāng)時(shí), ,
因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,
由此可知.
∵, ,
∴.
設(shè),
則 .
∵當(dāng)時(shí), ,∴在上單調(diào)遞增.
又∵,∴當(dāng)時(shí), ;當(dāng)時(shí), .
①當(dāng)時(shí), ,即,這時(shí), ;
②當(dāng)時(shí), ,即,這時(shí), .
綜上, 在上的最大值為:當(dāng)時(shí), ;
當(dāng)時(shí), .
[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,雙十一購物狂歡節(jié)(簡稱“雙11”)活動(dòng)已成為中國電子商務(wù)行業(yè)年度盛事,某網(wǎng)絡(luò)商家為制定2018年“雙11”活動(dòng)營銷策略,調(diào)查了2017年“雙11”活動(dòng)期間每位網(wǎng)購客戶用于網(wǎng)購時(shí)間(單位:小時(shí)),發(fā)現(xiàn)近似服從正態(tài)分布.
(1)求的估計(jì)值;
(2)該商家隨機(jī)抽取參與2017年“雙11”活動(dòng)的10000名網(wǎng)購客戶,這10000名客戶在2017年“雙11”活動(dòng)期間,用于網(wǎng)購時(shí)間屬于區(qū)間的客戶數(shù)為.該商家計(jì)劃在2018年“雙11”活動(dòng)前對這名客戶發(fā)送廣告,所發(fā)廣告的費(fèi)用為每位客戶0.05元.
(i)求該商家所發(fā)廣告總費(fèi)用的平均估計(jì)值;
(ii)求使取最大值時(shí)的整數(shù)的值.
附:若隨機(jī)變量服從正態(tài)分布,則,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,為橢圓上不與左右頂點(diǎn)重合的任意一點(diǎn),,分別為的內(nèi)心、重心,當(dāng)軸時(shí),橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦的長;
(2)動(dòng)點(diǎn)在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com