【題目】已知,設(shè)函數(shù).
(1)當(dāng)時(shí),求的極值點(diǎn);
(2)討論在區(qū)間上的單調(diào)性;
(3)對(duì)任意恒成立時(shí), 的最大值為1,求的取值范圍.
【答案】(1)是的極小值點(diǎn),無極大值點(diǎn);(2)見解析;(3).
【解析】【試題分析】(1)先求導(dǎo)數(shù),再解方程求導(dǎo)函數(shù)的零點(diǎn);(2)運(yùn)用導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系分析探求;(3)先將不等式進(jìn)行等價(jià)轉(zhuǎn)化,再分離參數(shù),構(gòu)造函數(shù)運(yùn)用導(dǎo)數(shù)知識(shí)求解:
(1)當(dāng)時(shí), ,∴,令,則,當(dāng)時(shí), ;當(dāng)時(shí), ,所以是的極小值點(diǎn),無極大值點(diǎn).
(2),
①當(dāng)時(shí), 在, 上單調(diào)遞增;在上單調(diào)遞減,
②當(dāng)時(shí), 在上單調(diào)遞增.
③當(dāng)時(shí), 在, 上單調(diào)遞增;在上單調(diào)遞減
④當(dāng)時(shí), 在上單調(diào)遞增,在上單調(diào)遞減.
(3)∵, 。由得
對(duì)任意恒成立,即
對(duì)任意恒成立.
令, ,根據(jù)題意,可以知道的最大值為1,則 恒成立.
由于,則.
當(dāng)時(shí), ,令,則,令,得,則在上單調(diào)遞減,在上單調(diào)遞增,則,∴在上單調(diào)遞增.
從而,滿足條件,故的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=4sin(2x+ )(x∈R),有下列命題:
①y=f(x)的表達(dá)式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點(diǎn) 對(duì)稱;
④y=f(x)的圖象關(guān)于直線x=﹣ 對(duì)稱.
其中正確的命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(﹣1)=0,f(0)=0,求出函數(shù)f(x)的零點(diǎn);
(2)若f(x)同時(shí)滿足下列條件:①當(dāng)x=﹣1時(shí),函數(shù)f(x)有最小值0,②f(1)=1求函數(shù)f(x)的解析式;
(3)若f(1)≠f(3),證明方程f(x)= [f(1)+f(3)]必有一個(gè)實(shí)數(shù)根屬于區(qū)間(1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
已知橢圓的短軸長(zhǎng)為,且與拋物線有共同的焦點(diǎn),橢圓的左頂點(diǎn)為A,右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線,與直線分別交于兩點(diǎn).
(I)求橢圓的方程;
(Ⅱ)求線段的長(zhǎng)度的最小值;
(Ⅲ)在線段的長(zhǎng)度取得最小值時(shí),橢圓上是否存在一點(diǎn),使得的面積為,若存在求出點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)試估計(jì)該公司投入萬元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式.
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市從現(xiàn)有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個(gè)數(shù)據(jù)(數(shù)據(jù)均在區(qū)間內(nèi))中,按照5%的比例進(jìn)行分層抽樣,統(tǒng)計(jì)結(jié)果按, , , , 分組,整理如下圖:
(Ⅰ)寫出頻率分布直方圖(圖乙)中的值;記所抽取樣本中甲種酸奶與乙種酸奶日銷售量的方差分別為, ,試比較與的大。ㄖ恍鑼懗鼋Y(jié)論);
(Ⅱ)從甲種酸奶日銷售量在區(qū)間的數(shù)據(jù)樣本中抽取3個(gè),記在內(nèi)的數(shù)據(jù)個(gè)數(shù)為,求的分布列;
(Ⅲ)估計(jì)1200個(gè)日銷售量數(shù)據(jù)中,數(shù)據(jù)在區(qū)間中的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 、分別為和的中點(diǎn).
()證明: 平面.
()證明:平面平面.
()當(dāng)上的動(dòng)點(diǎn)滿足什么條件時(shí),使三棱錐的體積與四棱錐體積的比值為,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們對(duì)環(huán)境關(guān)注度的提高,綠色低碳出行越來越受到市民重視. 為此貴陽(yáng)市建立了公共自行車服務(wù)系統(tǒng),市民憑本人二代身份證到自行車服務(wù)中心辦理誠(chéng)信借車卡借車,初次辦卡時(shí)卡內(nèi)預(yù)先贈(zèng)送20積分,當(dāng)積分為0時(shí),借車卡將自動(dòng)鎖定,限制借車,用戶應(yīng)持卡到公共自行車服務(wù)中心以1元購(gòu)1個(gè)積分的形式再次激活該卡,為了鼓勵(lì)市民租用公共自行車出行,同時(shí)督促市民盡快還車,方便更多的市民使用,公共自行車按每車每次的租用時(shí)間進(jìn)行扣分收費(fèi),具體扣分標(biāo)準(zhǔn)如下:
①租用時(shí)間不超過1小時(shí),免費(fèi);
②租用時(shí)間為1小時(shí)以上且不超過2小時(shí),扣1分;
③租用時(shí)間為2小時(shí)以上且不超過3小時(shí),扣2分;
④租用時(shí)間超過3小時(shí),按每小時(shí)扣2分收費(fèi)(不足1小時(shí)的部分按1小時(shí)計(jì)算).
甲、乙兩人獨(dú)立出行,各租用公共自行車一次,兩人租車時(shí)間都不會(huì)超過3小時(shí),設(shè)甲、乙租用時(shí)間不超過1小時(shí)的概率分別是0.4和0.5;租用時(shí)間為1小時(shí)以上且不超過2小時(shí)的概率分別是0.4和0.3.
(1)求甲、乙兩人所扣積分相同的概率;
(2)設(shè)甲、乙兩人所扣積分之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com