【題目】已知,函數(shù),.
(Ⅰ)求函數(shù)在處的切線;
(Ⅱ)若函數(shù)在處有最大值,求實(shí)數(shù)a的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】
(I)根據(jù)導(dǎo)數(shù)的幾何意義求切線斜率,從而寫出切線的方程;(Ⅱ)利用“先必要,后充分”的方法縮小參數(shù)范圍,減少分類討論的情形,并通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而判斷并求解函數(shù)在給定區(qū)間內(nèi)的最值.
解:(Ⅰ)因?yàn)?/span>,
則,又有,
故函數(shù)在處的切線為.
(Ⅱ)由知函數(shù)的圖象過定點(diǎn),且,又因?yàn)楹瘮?shù)在處有最大值,則,即.
當(dāng)時(shí),在上恒成立,在上單調(diào)遞增,所以在處有最大值,符合題意;
當(dāng)時(shí),,令,則,,從而知在上單調(diào)遞增,上單調(diào)遞減,上單調(diào)遞增,故函數(shù)在上的最大值為或.
又因?yàn)?/span>,所以,即,令,則在上單調(diào)遞增,且,可得,則.
綜上,實(shí)數(shù)的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出10人,進(jìn)行體育鍛煉體會(huì)交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會(huì)交流的10人中,隨機(jī)選出2人作重點(diǎn)發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列的前項(xiàng)中的最大項(xiàng)為,最小項(xiàng)為,設(shè).
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和;
(3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是直角梯形,,,,,,.以為折痕將折起,使點(diǎn)到達(dá)的位置,且,如圖2.
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( )
A. 回答該問卷的總?cè)藬?shù)不可能是100個(gè)
B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,國時(shí)期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明如圖所示的“勾股圓方圖”中,四個(gè)相同的直角三角形與中間的小正方形拼成一個(gè)大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形與等邊所在平面互相垂直,,,,分別是線段,的中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件),已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).
(1)設(shè)生產(chǎn)部件的人數(shù)為,分別寫出完成三種部件生產(chǎn)需要的時(shí)間;
(2)假設(shè)這三種部件的生產(chǎn)同時(shí)開工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com