已知數(shù)列{an}滿足a1=1,a2=
1
2
,且an+2=
an+12
an+an+1
,則該數(shù)列的通項公式an=
 
考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:先根據(jù)條件得到
an+1
an+2
-
an
an+1
=1,數(shù)列{
an
an+1
}是以
a1
a2
=
1
1
2
=2為首項,以1為公差的等差數(shù)列,再利用累乘法,繼而問題得以解決.
解答: 解:∵an+2=
an+12
an+an+1
,
an+an+1
an+1
=
an+1
an+2

an+1
an+2
-
an
an+1
=1,
∴數(shù)列{
an
an+1
}是以
a1
a2
=
1
1
2
=2為首項,以1為公差的等差數(shù)列,
an
an+1
=2+n-1=n+1,
a1
a2
=
1
1
2
=2,
a2
a3
=3,
…,
an
an-1
=n+1,
利用累乘法得
a1
a2
a2
a3
an-1
an
=2×3×4×…×n=n!
∴an=
1
n!
點評:本題考查數(shù)列的通項公式的求法,解題時要認真審題,注意累乘法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)f(y)=f(2xy+3)+3f(x+y)-3f(x)+6x,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線
(x-1)2+y2
=
2
2
(2-x) 的焦點是雙曲線C的焦點,點(3,-
2
39
3
)在C上,則C的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓錐的高和底面半徑相等,它的一個內(nèi)接圓柱的高和底面半徑也相等,圓柱的表面積S1,圓錐的表面積S2.求S1:S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
4
sin(πx)與函數(shù)g(x)=x3+bx+c的定義域為[0,2],它們在同一點有相同的最小值,則b+c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=1,其前n項和為Tn,且b2+S2=11,2S3=9b3
(1)求數(shù)列{an}和數(shù)列{bn}的通項;
(2)問是否存在正整數(shù)m,n,r,使得Tn=am+r•bn成立?如果存在,請求出m,n,r的關(guān)系式;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=
3
2
,an+1=an2-an+1(n∈N*),則m=
1
a1
+
1
a2
+…+
1
a2014
的整數(shù)部分是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上為奇函數(shù),當(dāng)x>0時f(x)=2x+1,則函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的中心是O,左,右頂點分別是A,B,點A到右焦點的距離為3,離心率為
1
2
,P是橢圓上與A,B不重合的任意一點.
(1)求橢圓方程;
(2)設(shè)Q(0,-m)(m>0)是y軸上定點,若當(dāng)P點在橢圓上運動時PQ最大值是
5
,求m的值.

查看答案和解析>>

同步練習(xí)冊答案