已知PA⊥菱形ABCD所在的平面.求證:面PAC⊥面PBD

答案:
解析:

  如圖所示,連結(jié)BD、AC,交于O

  ∵四邊形ABCD是菱形

  ∴BD⊥AC

  又 PA⊥平面ABCD,

  ∴BD⊥PA

  ∴BD⊥平面PAC

  又 BD平面PBD

  ∴平面PAC⊥平面PBD


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐P-ABCD的底面ABCD是邊長為2的菱形,∠ABC=60°,點(diǎn)M是棱PC的中點(diǎn),PA⊥平面ABCD,AC、BD交于點(diǎn)O.
(1)已知:PA=
2
,求證:AM⊥平面PBD;
(2)若二面角M-AB-D的余弦值等于
21
7
,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點(diǎn).
(Ⅰ)證明:AE⊥PD;
(Ⅱ)若直線PB與平面PAD所成角的正弦值為
6
4
,△ABC中,|AB|=|AC|=
7
2
,|BC|=2
,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點(diǎn).
(1)判定AE與PD是否垂直,并說明理由.
(2)設(shè)AB=2,若H為PD上的動點(diǎn),若△AHE面積的最小值為
6
2
,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,點(diǎn)E、G分別是CD、PC的中點(diǎn),點(diǎn)F在PD上,且PF:FD=2:1.
(Ⅰ)證明:EA⊥PB;
(Ⅱ)證明:BG∥面AFC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中點(diǎn),F(xiàn)為線段PC上一點(diǎn).
(Ⅰ)求證:AE⊥PD;
(Ⅱ)若H為PD上的動點(diǎn),EH與平面PAD所成最大角的 正切值為
7
2
,若二面角E-AF-C的余弦值為
3
13
13
,求
PF
PC
的值.

查看答案和解析>>

同步練習(xí)冊答案