C
分析:欲求得函數(shù)y=log
2(x
2-5x-6 )單調(diào)遞減區(qū)間,將函數(shù)y=log2(x
2-5x-6 )分解成兩部分:f(U)=log
2U外層函數(shù),U=x
2-5x-6 是內(nèi)層函數(shù).外層函數(shù)是指數(shù)函數(shù),其底數(shù)大于1,是增函數(shù),故要求內(nèi)層函數(shù)是減函數(shù)時,原函數(shù)才為減函數(shù).
問題轉(zhuǎn)化為求U=x
2-5x-6的單調(diào)減區(qū)間,但要注意要保證U>0.
解答:根據(jù)題意,函數(shù)y=log2(x
2-5x-6 )分解成兩部分:f(U)=log
2U外層函數(shù),U=x
2-5x-6 是內(nèi)層函數(shù).
根據(jù)復合函數(shù)的單調(diào)性,可得若函數(shù)y=log
2x單調(diào)增函數(shù),
則函數(shù)y=log
2(x
2-5x-6 )單調(diào)遞減區(qū)間就是函數(shù)y=x
2-5x-6單調(diào)遞減區(qū)間,
∴
,
考慮到函數(shù)的定義域,x
2-5x-6>0,得x<-1.
故選C.
點評:一般地,復合函數(shù)中,當內(nèi)層函數(shù)和外層函數(shù)一增一減時,原函數(shù)為減函數(shù);
當內(nèi)層函數(shù)和外層函數(shù)同增同減時,原函數(shù)為增函數(shù).