5.如圖,在正方體ABCD-A1B1C1D1中,E是的AA1中點(diǎn),P為地面ABCD內(nèi)一動(dòng)點(diǎn),設(shè)PD1、PE與地面ABCD所成的角分別為θ1、θ2(θ1、θ2均不為0),若θ12,則動(dòng)點(diǎn)P的軌跡為哪種曲線的一部分(  )
A.直線B.C.橢圓D.拋物線

分析 通過建系如圖,利用cosθ1=cosθ2,結(jié)合平面向量數(shù)量積的運(yùn)算計(jì)算即得結(jié)論.

解答 解:建系如圖,設(shè)正方體的邊長(zhǎng)為1,則E(2,0,1),D1(0,0,2),
設(shè)P(x,y,0),則$\overrightarrow{PE}$=(2-x,-y,1),$\overrightarrow{P{D}_{1}}$=(-x,-y,2),
∵θ12,$\overrightarrow{z}$=(0,0,1),
∴cosθ1=cosθ2,即$\frac{\overrightarrow{PE}•\overrightarrow{z}}{|\overrightarrow{PE}|•|\overrightarrow{z}|}$=$\frac{\overrightarrow{P{D}_{1}}•\overrightarrow{z}}{|\overrightarrow{P{D}_{1}}|•|\overrightarrow{z}|}$,
代入數(shù)據(jù),得:$\frac{1}{\sqrt{(2-x)^{2}+{y}^{2}+1}}$=$\frac{2}{\sqrt{{x}^{2}+{y}^{2}+4}}$,
整理得:x2+y2-$\frac{16}{3}$x+$\frac{16}{3}$=0,
變形,得:$(x-\frac{8}{3})^{2}$+y2=$\frac{16}{9}$,
即動(dòng)點(diǎn)P的軌跡為圓的一部分,
故選:B.

點(diǎn)評(píng) 本題考查平面與圓柱面的截線,建立空間直角坐標(biāo)系是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=2,BC=2$\sqrt{2}$,M,N分別是CC1,BC的中點(diǎn),點(diǎn)P在直線A1B1上,且$\overrightarrow{{A_1}P}=λ\overrightarrow{{A_1}{B_1}}$.
(Ⅰ)證明:無論λ取何值,總有AM⊥PN;
(Ⅱ)當(dāng)λ取何值時(shí),直線PN與平面ABC所成的角θ最大?并求該角取最大值時(shí)的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖所示的一系列正方形將點(diǎn)陣分割,從內(nèi)向外擴(kuò)展,其模式如下:
4=22
4+12=16=42
4+12+20+36=62
4+12+20+28=64=82

由上述事實(shí),請(qǐng)推測(cè)關(guān)于n的等式:4+12+20+…+(8n-4)=(2n)2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖均為全等的幾何圖形(下邊是邊長(zhǎng)為2的正方形,上邊為半圓),俯視圖為等腰直角三角形(直角邊的長(zhǎng)為2)及其外接圓,則該幾何體的體積是4+$\frac{4\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將函數(shù)y=sinx+$\sqrt{3}$cosx的圖象向右平移φ(φ>0)個(gè)單位,再向上平移1個(gè)單位后,所得圖象經(jīng)過點(diǎn)($\frac{π}{4}$,1),則φ的最小值為$\frac{7π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=$\frac{1}{2}$x2-2ax+ln x存在垂直于y軸的切線,則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖所示,坐標(biāo)紙上的每個(gè)單元格的邊長(zhǎng)為1,由下往上的六個(gè)點(diǎn):A1(x1,y1),A2(x2,y2),…,A6(x6,y6)的橫、縱坐標(biāo)分別對(duì)應(yīng)數(shù)列{an}(n∈N*)的前12項(xiàng),(即橫坐標(biāo)為奇數(shù)項(xiàng),縱坐標(biāo)為偶數(shù)項(xiàng)),如表所示:
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此規(guī)律下去,則a15=-4,a2016=1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知球O被互相垂直的兩個(gè)平面所截,得到兩圓的公共弦長(zhǎng)為2,若兩圓的半徑分別為$\sqrt{3}$和3,則球O的表面積為44π.

查看答案和解析>>

同步練習(xí)冊(cè)答案