某商品每件成本9元,售價為30元,每星期賣出432件,如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低值(單位:元,)的平方成正比,已知商品單價降低2元時,一星期多賣出24件.

(I)將一個星期的商品銷售利潤表示成的函數(shù);

(II)如何定價才能使一個星期的商品銷售利潤最大?

 

【答案】

(I)

(II)時,達到極大值.因為,所以定價為元能使一個星期的商品銷售利潤最大.

【解析】解:(Ⅰ)設商品降價元,則多賣的商品數(shù)為,若記商品在一個星期的獲利為

則依題意有,

又由已知條件,,于是有

所以

(Ⅱ)根據(jù)(Ⅰ),我們有

2

12

0

0

遞減

極小

遞增

極大

遞減

時,達到極大值.因為,,所以定價為元能使一個星期的商品銷售利潤最大.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

21、某商品每件成本9元,售價30元,每星期賣出432件.如果降低價格.銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低銷x(單位:元,0≤x≤30)的平方成正比.已知商品單價降低2元時,一星期多賣出24件.
(Ⅰ)將一個星期的商品銷售利潤表示成x的函數(shù);
(Ⅱ)如何定價才能使一個星期的商品銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某商品每件成本9元,售價為30元,每星期賣出432件.如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低值x(單位:元,0≤x≤21)的平方成正比.已知商品售價降低2元時,一星期多賣出24件.
(Ⅰ)將一個星期內該商品的銷售利潤表示成x的函數(shù);
(Ⅱ)如何定價才能使一個星期該商品的銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期期中考試數(shù)學文卷 題型:解答題

(本小題滿分14分)

某商品每件成本9元,售價為30元,每星期賣出432件,如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低值(單位:元,)的平方成正比,已知商品單價降低2元時,一星期多賣出24件.

(I)將一個星期的商品銷售利潤表示成的函數(shù);

(II)如何定價才能使一個星期的商品銷售利潤最大?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河南省豫南九校高三上學期第二次聯(lián)考文科數(shù)學卷 題型:解答題

(本小題滿分12分)

某商品每件成本9元,售價為30元,每星期賣出432件,如果降低價格,銷售量可以增加,且每星期多賣出商品件數(shù)與商品單價的降低值x(單位:元,0≤x≤30)的平方成正比,已知商品單價降低2元時,一星期多賣出24件

(1)將一個星期的商品銷售利潤表示成x的函數(shù);

(2)如何定價才能使一個星期的商品銷售利潤最大?

 

查看答案和解析>>

同步練習冊答案