分析 (1)由題意和一元二次方程的解法求出cosC的值,由余弦函數(shù)的值域進行取舍;
(2)由(1)和余弦定理列出方程化簡,由條件和基本不等式求出ab的范圍,可求出c的范圍,即可求出△ABC周長的最小值.
解答 解:(1)∵cosC是方程2x2-3x-2=0的一個根,
∴cosC=$-\frac{1}{2}$或cosC=2(舍去),
即cosC=$-\frac{1}{2}$;
(2)由(1)和余弦定理得,
c2=a2+b2-2abcosC,即c2=a2+b2+ab,
∵a+b=10,∴$ab≤(\frac{a+b}{2})^{2}$=25,當且僅當a=b時取等號,
則c2=(a+b)2-ab=100-ab≥75,即c≥$5\sqrt{3}$,
∴△ABC周長的最小值是10+$5\sqrt{3}$.
點評 本題考查余弦定理,余弦函數(shù)的值域,以及基本不等式在求最值中的應用,考查化簡、變形能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8x-6y-7=0 | B. | 3x+4y=0 | C. | 3x+4y-12=0 | D. | 6x+8y-25=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | -3 | C. | 0 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | sinθ<tanθ<cosθ | B. | tanθ<sinθ<cosθ | C. | tanθ<cosθ<sinθ | D. | sinθ<cosθ<tanθ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com