13.已知在二項式(x2+$\frac{1}{x}$)5的展開式中,含x4的項的二項式系數(shù)是10.

分析 先求出二項式展開式的通項公式,再令x的冪指數(shù)等于4,求得r的值,即可求得展開式中含x4的項的二項式系數(shù).

解答 解:二項式(x2+$\frac{1}{x}$)5的展開式的通項公式為Tr+1=${C}_{5}^{r}$•x10-3r,令10-3r=4,求得r=2,
故含x4的項的二項式系數(shù)為${C}_{5}^{2}$=10,
故答案為:10.

點評 本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.三個數(shù)${0.3^π},{π^{0.3}},sin\frac{20π}{3}$的大小順序是( 。
A.$sin\frac{20π}{3}<{0.3^π}<{π^{0.3}}$B.$sin\frac{20π}{3}<{π^{0.3}}<{0.3^π}$
C.${0.3^π}<sin\frac{20π}{3}<{π^{0.3}}$D.${0.3^π}<{π^{0.3}}<sin\frac{20π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.$\frac{2sin20°+sin40°}{sin50°}$$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|x2-x-2<0},B={x|$\frac{1}{x-1}$≤1},則A∩B=( 。
A.(-1,1]B.(-1,1)C.D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.以下四個命題中,正確的是( 。
A.原點與點(2,3)在直線2x+y-3=0同側(cè)B.點(3,2)與點(2,3)在直線x-y=0同側(cè)
C.原點與點(2,1)在直線y-3x+$\frac{1}{2}$=0異側(cè)D.原點與點(1,4)在直線y-3x+$\frac{1}{2}$=0異側(cè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)=$\frac{1}{2}$ex+x-6的零點在區(qū)間(n,n+1)(n∈N*)內(nèi),則n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖所示,在△ABC中,點O是BC上的點,過O的直線MN分別交直線AB,AC于不同的兩點M,N,若$\overrightarrow{AB}=2\overrightarrow{AM}$,$\overrightarrow{AC}=\frac{2}{3}\overrightarrow{AN}$,$\overrightarrow{AO}=m\overrightarrow{AB}+n\overrightarrow{AC}$(m>0,n>0),則6m+2n的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)a=($\frac{7}{9}$)${\;}^{-\frac{1}{4}}$,b=($\frac{9}{7}$)${\;}^{\frac{1}{5}}$,c=log2$\frac{7}{9}$,則a,b,c的大小順序是a>b>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合M={x|x2-2x-3<0}和N={x|x>1}的關(guān)系如圖所示,則陰影部分所表示的集合為{x|1<x<3}.

查看答案和解析>>

同步練習(xí)冊答案