如圖,ABCD,E、F分別為AD、BC的中點,若AB=18,CD=4,則EF的長是    
7

試題分析:因為ABCD,設(shè)AD,BC的交點為O,所以,所以,
因為E、F分別為ADBC的中點,所以,又因為,所以,
所以EF的長是7.
點評:三角形相似,對應(yīng)邊成比例,應(yīng)用時要注意不要弄錯對應(yīng)邊.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正△ABC中,點D,E分別在邊AC, AB上,且AD=ACAE=AB,BD,CE相交于點F.

(Ⅰ)求證:A,E,F, D四點共圓;
(Ⅱ)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖, 內(nèi)接于⊙, 是⊙的直徑, 是過點的直線, 且.

(Ⅰ) 求證: 是⊙的切線;
(Ⅱ)如果弦于點, , , , 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

把下列參數(shù)方程化為普通方程,并說明它們各表示什么曲線:
(1)(t為參數(shù));
(2)為參數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線
x=-2+t
y=1-t
(t為參數(shù))被圓(x-3)2+(y+1)2=25所截得的弦長為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

A.(幾何證明選講選做題)


如圖,已知AB為圓O的直徑,BC切圓O于點B,AC交圓O于點PE為線段BC的中點.求證:OPPE

B.(矩陣與變換選做題)
已知M,N,設(shè)曲線y=sinx在矩陣MN對應(yīng)的變換作用下得到曲線F,求F的方程.
C.(坐標(biāo)系與參數(shù)方程選做題)
在平面直角坐標(biāo)系xOy中,直線m的參數(shù)方程為t為參數(shù));在以O為極點、射線Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點,求線段AB的長.
D.(不等式選做題)
設(shè)x,y均為正數(shù),且xy,求證:2x≥2y+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖設(shè)M為線段AB中點,AE與BD交于點C ∠DME=∠A=∠B=,且DM交AC于F,EM交BD于G。
(1)寫出圖中三對相似三角形,并對其中一對作出證明;
(2)連結(jié)FG,設(shè)=45°,AB=4,AF=3,求FG長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分10分)選修4—1:幾何證明選講
如圖,已知AD是的外角的平分線,交BC的延長線于點D,延長DA交的外接圓于點F,連結(jié)FB、FC

(I)求證:FB=FC;
(II)求證:FB2=FA·FD;
(III)若AB是外接圓的直徑,求AD的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線的參數(shù)方程為,上的點對應(yīng)的參數(shù)是,則點之間的距離是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案