(本小題滿分14分)
在數(shù)列中,為其前項(xiàng)和,滿足.
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列為公比不為1的等比數(shù)列,求
(1)(2)
解析試題分析:解:(1)當(dāng)時(shí),所以,即……3分所以當(dāng)時(shí),;當(dāng)時(shí),所以數(shù)列的通項(xiàng)公式為…6分
(2)當(dāng)時(shí),,
,,若,則,
從而為公比為1的等比數(shù)列,不合題意;
若,則,,
由題意得,,所以或.
當(dāng)時(shí),,得,,不合題意;
當(dāng)時(shí),,從而
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/e/1tcjm1.png" style="vertical-align:middle;" /> , 為公比為3的等比數(shù)列,,所以,從而.
考點(diǎn):數(shù)列的通項(xiàng)公式和求和
點(diǎn)評:解決的關(guān)鍵是能結(jié)合前n項(xiàng)和與通項(xiàng)公式的關(guān)系來求解通項(xiàng)公式,同時(shí)結(jié)合等比數(shù)列的求和公式得到結(jié)論,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等比數(shù)列都在函數(shù)的圖象上。
(1)求r的值;
(2)當(dāng);
(3)若對一切的正整數(shù)n,總有的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足a1=2,an+1=an-.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan·2n,求數(shù)列{bn}的前n項(xiàng)和Sn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知數(shù)列的通項(xiàng)公式為,數(shù)列的前n項(xiàng)和為,且滿足
(I)求的通項(xiàng)公式;
(II)在中是否存在使得是中的項(xiàng),若存在,請寫出滿足題意的一項(xiàng)(不要求寫出所有的項(xiàng));若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前n項(xiàng)和為,點(diǎn)均在直線上.
(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),試證明數(shù)列為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前n項(xiàng)和為,且滿足,n=1,2,3,…….
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,且,求數(shù)列的通項(xiàng)公式;
(3)設(shè),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列{an}、{bn}分別是首項(xiàng)均為2的各項(xiàng)均為正數(shù)的等比數(shù)列和等差數(shù)列,且
(I) 求數(shù)列{an}、{bn}的通項(xiàng)公式;
(II )求使<0.001成立的最小的n值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分) 已知數(shù)列的前項(xiàng)和為,且,等差數(shù)列中,,。
(1)求數(shù)列的通項(xiàng)和;
(2) 設(shè),求數(shù)列的前項(xiàng)和,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an=+ (n≥2),則數(shù)列{an}的通項(xiàng)公式為an=( )
A.n-1 | B.n | C.2n-1 | D.2n |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com