【題目】圓心在直線(xiàn)x﹣y+2=0上,且與兩坐標(biāo)軸都相切的圓的方程為( 。
A. (x+1)2+(y﹣1)2=1 B. (x﹣1)2+(y+1)2=1 C. (x﹣1)2+(y+1)2=2 D. (x﹣1)2+(y﹣1)2=1
【答案】A
【解析】設(shè)圓心坐標(biāo)為(x,﹣x)代入直線(xiàn)x﹣y+2=0得x=﹣1,
故圓的標(biāo)準(zhǔn)方程為:(x+1)2+(y﹣1)2=1.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形:①線(xiàn)段;②直線(xiàn);③球;④梯形;⑤長(zhǎng)方體,其中投影不可能是線(xiàn)段的是________(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P(a,5)與圓x2+y2=24的位置關(guān)系是( )
A.點(diǎn)在圓外
B.點(diǎn)在圓內(nèi)
C.點(diǎn)在圓上
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在邊長(zhǎng)為1的等邊三角形中,分別是邊上的點(diǎn),,是的中點(diǎn),與交于點(diǎn),將沿折起,得到如圖2所示的三棱錐,其中.
(1) 證明://平面;
(2) 證明:平面;
(3) 當(dāng)時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰梯形中,,為中點(diǎn), 點(diǎn)分別為的中點(diǎn), 將沿折起到 的位置,使得平面平面(如圖 ).
(1)求證:;
(2)求直線(xiàn)與平面所成角的正弦值;
(3)側(cè)棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),為橢圓上的三個(gè)動(dòng)點(diǎn),若四邊形為平行四邊形,判斷的面積是否為定值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足,其中,是不為1的常數(shù).
(Ⅰ)證明:若是遞增數(shù)列,則不可能是等差數(shù)列;
(Ⅱ)證明:若是遞減的等比數(shù)列,則中的每一項(xiàng)都大于其后任意個(gè)項(xiàng)的和;
(Ⅲ)若,且是遞增數(shù)列,是遞減數(shù)列,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)在其定義域內(nèi)為偶函數(shù)的是( )
A.y=2x
B.y=2x
C.y=log2x
D.y=x2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高一、高二、高三年級(jí)的學(xué)生人數(shù)之比為3∶3∶4,現(xiàn)用分層抽樣的方法從該校高中三個(gè)年級(jí)的學(xué)生中抽取一個(gè)容量為50的樣本,則應(yīng)從高二年級(jí)抽取名學(xué)生.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com