(2013•甘肅三模)(選修4-4:坐標(biāo)系與參數(shù)方程)在直角坐標(biāo)系中,直線l的參數(shù)方程為
x=-1+
3
5
t
y=-1+
4
5
t
t為參數(shù)).若以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=
2
sin(θ+
π
4
)

(I)求曲線C的直角坐標(biāo)方程;
(II)求直線l被曲線C所截得的弦長.
分析:(1)曲線的極坐標(biāo)方程即ρ=cosθ+sinθ,兩邊同乘以ρ得:ρ2=ρcosθ+ρsinθ,再根據(jù)直角坐標(biāo)與極坐標(biāo)的互化公式求得C的直角坐標(biāo)方程.
(2)將直線參數(shù)方程代入圓C的方程,利用根與系數(shù)的關(guān)系和弦長公式求得直線l被曲線C所截得的弦長.
解答:解:(1)由ρ=
2
sin(θ+
π
4
)
得:ρ=cosθ+sinθ,兩邊同乘以ρ得:ρ2=ρcosθ+ρsinθ,
∴x2+y2-x-y=0,即(x-
1
2
)2+(y-
1
2
)2=
1
2

(2)將直線參數(shù)方程代入圓C的方程得:5t2-21t+20=0,
t1+t2=
21
5
,t1t2=4

|MN|=|t1-t2|=
(t1+t2)2-4t1t2
=
41
5
點(diǎn)評:本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,直線的參數(shù)方程,弦長公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•甘肅三模)已知函數(shù)y=
x3
3
+
mx2+(m+n)x+1
2
的兩個極值點(diǎn)分別為x1,x2,且x1∈(0,1),x2∈(1,+∞),記分別以m,n為橫、縱坐標(biāo)的點(diǎn)P(m,n)表示的平面區(qū)域?yàn)镈,若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點(diǎn),則實(shí)數(shù)a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•甘肅三模)設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,令an=lgxn,則a1+a2+…+a99的值為
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•甘肅三模)在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為矩形,AB=1,AA1=
2
,D為AA1的中點(diǎn),BD與AB1交于點(diǎn)O,CO丄側(cè)面ABB1A1
(Ⅰ)證明:BC⊥AB1;
(Ⅱ)若OC=OA,求三棱錐B1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•甘肅三模)執(zhí)行如圖所示的程序框圖,輸出的S值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•甘肅三模)觀察下列算式:
l3=1,
23=3+5,
33=7+9+11,
43=13+15+17+19,

若某數(shù)n3按上述規(guī)律展開后,發(fā)現(xiàn)等式右邊含有“2013”這個數(shù),則n=
45
45

查看答案和解析>>

同步練習(xí)冊答案