是否存在常數(shù)a,b,c,使得等式1(n2-12)+2(n2-22)+…+n(n2-n2)=an4+bn2+c對一切正整數(shù)n都成立?若存在,求出a,b,c的值;若不存在,說明理由.
考點:數(shù)學歸納法
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:假設存在a,b,c,使得所給等式成立.通過n=1,2,3,列出方程組,求出abc即可.然后用數(shù)學歸納法證明等式1(n2-12)+2(n2-22)+…+n(n2-n2)=
1
4
n4-
1
4
n2對一切正整數(shù)n都成立.
解答: 解:假設存在a,b,c,使得所給等式成立.
令n=1,2,3代入等式得
a+b+c=0
16a+4b+c=3
81a+9b+c=18
,解得
a=
1
4
b=-
1
4
c=0

以下用數(shù)學歸納法證明等式1(n2-12)+2(n2-22)+…+n(n2-n2)=
1
4
n4-
1
4
n2對一切正整數(shù)n都成立.
(1)當n=1時,由以上可知等式成立;
(2)假設當n=k時,等式成立,即1(k2-12)+2(k2-22)+…+k(k2-k2)=
1
4
k4-
1
4
k2,
則當n=k+1時,1[(k+1)2-12]+2[(k+1)2-22]+…+(k+1)[(k+1)2-(k+1)2]=
1
4
(k+1)4-
1
4
(k+1)2
=1(k2-12)+2(k2-22)+…+k(k2-k2)+(2k+1)+2(2k+1)+…+k(2k+1)
=
1
4
k4-
1
4
k2+(2k+1)
k(k+1)
2

=
1
4
(k+1)4-
1
4
(k+1)2

由(1)(2)知,等式結(jié)一切正整數(shù)n都成立.
點評:本題是探索性命題,它通過觀察歸納、猜想、證明這一完整的思路過程去探索和發(fā)現(xiàn)問題,并證明所得結(jié)論的正確性,這是非常重要的一種思維能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a2=2,a6=8,則a10的值為( 。
A、10B、12C、14D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,E是DD1的中點
(1)求證:D1B∥面ACE
(2)求異面直線A1B與B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=xlnx+ax,g(x)=-x2-2,
(1)對一切x∈(0,+∞),f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)當a=1時,求函數(shù)f(x)在[m,m+3](m>0)上的最小值和最大值;
(3)證明:對一切x∈(0,+∞),都有l(wèi)nx+1>
1
ex
-
2
ex
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+ax在(-1,0)上是增函數(shù).
(1)求實數(shù)a的取值范圍A;
(2)當a為A中最小值時,定義數(shù)列{an}滿足:a1∈(-1,0),且2an+1=f(an),用數(shù)學歸納法證明an∈(-1,0),并判斷an+1與an的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-1,1),B(1,2),C(-2,-1),D(3,4),求向量
AB
CD
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m,n是正整數(shù),f(x)=(1+x)m+(1+x)n的展開式中x的系數(shù)為7,
(1)試求f(x)中的x2的系數(shù)的最小值
(2)對于使f(x)的x2的系數(shù)為最小的m,n,求出此時x3的系數(shù)
(3)利用上述結(jié)果,求f(0.003)的近似值(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,某市新體育公園的中心廣場平面圖如圖所示,在y軸左側(cè)的觀光道曲線段是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<π),x∈[-4,0]時的圖象且最高點B(-1,4),在y軸右側(cè)的曲線段是以CO為直徑的半圓弧.
(1)試確定A,ω和φ的值;
(2)現(xiàn)要在右側(cè)的半圓中修建一條步行道CDO(單位:米),在點C與半圓弧上的一點D之間設計為直線段(造價為2萬元/米),從D到點O之間設計為沿半圓弧的弧形(造價為1萬元/米).設∠DCO=θ(弧度),試用θ來表示修建步行道的造價預算,并求造價預算的最大值?(注:只考慮步行道的長度,不考慮步行道的寬度)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α是第四象限角,且sinα=-
5
13
,則tanα=
 

查看答案和解析>>

同步練習冊答案