如圖,A為橢圓
x2
a2
+
y2
b1
=1(a>b>0)上的一個動點,弦AB、AC分別過焦點F1、F2,當(dāng)AC垂直于x軸時,恰好有AF1:AF2=3:1.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)
AF1
1
F1B
,
AF2
2
F2C

①當(dāng)A點恰為橢圓短軸的一個端點時,求λ12的值;
②當(dāng)A點為該橢圓上的一個動點時,試判斷是λ12否為定值?若是,請證明;若不是,請說明理由.
(Ⅰ)設(shè)|AF1|=m,則|AF2|=3m.
由題設(shè)及橢圓定義得
(3m)2-m2=4c2
3m+m=2a

消去m得a2=2c2,所以離心率
2
2

(Ⅱ)設(shè)A(x0,y0),B(x1,y1),C(x2,y2),
AF1
=(-C-x0,-y0),
F1
B
=(x1+C,y1
AF1
1
F1B
,∴x1=-
c+x0
λ1
-c,y1=-
y0
λ1

又x02+2y02=2c2①,x12+2y12=2c2②,
將x1,y1代入②得:
c+x0
λ1
+c)2+2(
y0
λ1
2=2c2即(c+x0+cλ12=2y20=2λ1c2③;
③-①得:2x0=cλ1-3c;
同理:由
AF2
2
F2C
.得2x0=-cλ2+3c;
∴cλ1-3c=-cλ2+3c,
∴λ12=6.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

“神舟”五號飛船的運行軌道是以地心為一個焦點的橢圓,地球半徑為R公里,飛船的近地點(距離地球最近的點)距地球地面200公里,遠(yuǎn)地點(距離地球最遠(yuǎn)的點)距地面地面350公里,則飛船軌道的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點,F(xiàn)為橢圓的一個焦點,且AF⊥x軸,|AF|=焦距,則橢圓的離心率是(  )
A.
1+
5
2
B.
3
-1
C.
2
-1
D.
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,長軸長為2
3
,直線l:y=kx+m交橢圓于不同的兩點A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)若m=1,且
OA
OB
=0
,求k的值(O點為坐標(biāo)原點);
(Ⅲ)若坐標(biāo)原點O到直線l的距離為
3
2
,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的標(biāo)準(zhǔn)方程為
x2
6-m
+
y2
m-1
=1
,
(1)若橢圓的焦點在x軸,求m的取值范圍;
(2)試比較m=2與m=3時兩個橢圓哪個更扁.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點分別為F1(-c,0)和F2(c,0)(c>0),過點E(
a2
c
,0)
的直線與橢圓相交于A,B兩點,且F1AF2B,|F1A|=2|F2B|.
(1)求橢圓的離心率;
(2)求直線AB的斜率;
(3)設(shè)點C與點A關(guān)于坐標(biāo)原點對稱,直線F2B上有一點H(m,n)(m≠0)在△AF1C的外接圓上,求
n
m
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F是雙曲線的左焦點,A為右頂點,上下虛軸端點B、C,若FB交CA于D,且,則此雙曲線的離心率為(   ).
A .          B.           C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線上的一點到一個焦點的距離等于1,那么點到另一個焦點的距離為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若實數(shù)滿足,則曲線與曲線的(   )
A.實半軸長相等B.虛半軸長相等C.離心率相等D.焦距相等

查看答案和解析>>

同步練習(xí)冊答案