【題目】已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f( )|對(duì)x∈R恒成立,且f( )>f(π),則f(x)的單調(diào)遞增區(qū)間是( )
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)
【答案】C
【解析】解:若 對(duì)x∈R恒成立,
則f( )等于函數(shù)的最大值或最小值
即2× +φ=kπ+ ,k∈Z
則φ=kπ+ ,k∈Z
又
即sinφ<0
令k=﹣1,此時(shí)φ= ,滿足條件
令2x ∈[2kπ﹣ ,2kπ+ ],k∈Z
解得x∈
故選C
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn), , 分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且.
(1)求橢圓的方程;
(2)已知直線: 被圓: 所截得的弦長為,若直線與橢圓交于, 兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的一個(gè)頂點(diǎn)為A(0,1),離心率為 ,過點(diǎn)B(0,﹣2)及左焦點(diǎn)F1的直線交橢圓于C,D兩點(diǎn),右焦點(diǎn)設(shè)為F2 .
(1)求橢圓的方程;
(2)求△CDF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的最小正周期為2 π,最小值為﹣2,且當(dāng)x= 時(shí),函數(shù)取得最大值4. (Ⅰ)求函數(shù) f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若當(dāng)x∈[ , ]時(shí),方程f(x)=m+1有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直二面角D﹣AB﹣E中,四邊形ABCD是邊長為2的正方形,AE=EB,點(diǎn)F在CE上,且BF⊥平面ACE;
(1)求證:AE⊥平面BCE;
(2)求二面角B﹣AC﹣E的正弦值;
(3)求點(diǎn)D到平面ACE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f′(x)滿足f′(1)=2a,f′(2)=﹣b,其中常數(shù)a,b∈R. (Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.
(Ⅱ)設(shè)g(x)=f′(x)e﹣x . 求函數(shù)g(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,點(diǎn)E在CC1上且C1E=3EC
(1)證明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,D是AC的中點(diǎn),EF∥DB.
(1)已知AB=BC,AF=CF,求證:AC⊥平面BEF;
(2)已知G、H分別是EC和FB的中點(diǎn),求證:GH∥平面ABC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com