(2012•黃州區(qū)模擬)已知實數(shù)x,y滿足
x+3y-3≤0
x-y+1≥0
y≥-1
則z=2|x|+y的取值范圍是
[-1,11]
[-1,11]
分析:根據(jù)約束條件
x+3y-3≤0
x-y+1≥0
y≥-1
畫出可行域,然后分析平面區(qū)域里特殊點,然后將其代入z=2|x|+y中,求出z=2|x|+y的取值范圍.
解答:
解:根據(jù)約束條件畫出可行域,畫出z=2|x|+y表示的虛線部分.
由圖得當(dāng)虛線部分z=2|x|+y過點D(0,-1)時,Z最小為-1.
當(dāng)z=2|x|+y過點A(6,-1)時,Z最大為11.
故所求z=2|x|+y的取值范圍是[-1,11]
故答案為:[-1,11].
點評:本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.解決時,首先要解決的問題是明白題目中目標(biāo)函數(shù)的意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),設(shè)函數(shù)f(x)=
m
n
+1.
(1)若x∈[0,
π
2
],f(x)=
11
10
,求cosx的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2bcosA≤2c-
3
a,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)如圖,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中點.
(Ⅰ)求證:A1B∥平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)試問線段A1B1上是否存在點E,使AE與DC1成60°角?若存在,確定E點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)已知某幾何體的三視圖如圖,則該幾何體的表面積為
3+
2
+
3
3+
2
+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)已知函數(shù)f(x)=
|log
x
4
-1|-2,|x|≤1
1
1+x
1
3
,|x|>1
,則f(f(27))=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)如圖是二次函數(shù)f(x)=x2-bx+a的部分圖象,則函數(shù)g(x)=2lnx+f(x)在點(b,g(b))處切線的斜率的最小值是( 。

查看答案和解析>>

同步練習(xí)冊答案