【題目】某水果店購進(jìn)某種水果的成本為,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來30天的銷售單價與時間之間的函數(shù)關(guān)系式為,銷售量與時間的函數(shù)關(guān)系式為。

該水果店哪一天的銷售利潤最大?最大利潤是多少?

為響應(yīng)政府“精準(zhǔn)扶貧”號召,該店決定每銷售水果就捐贈元給精準(zhǔn)扶貧對象.欲使捐贈后不虧損,且利潤隨時間 的增大而增大,求捐贈額的值。

【答案】第十天的銷售利潤最大,最大利潤為1250元;(Ⅱ)

【解析】試題分析:(1)利潤=的利潤銷售量,所以,則當(dāng)時, ;(2)捐贈后利潤,又第一天不虧損,利潤單調(diào)遞增,則,對稱軸,解得答案。

試題解析:

設(shè)利潤為,則

……2

當(dāng)時,

即第十天的銷售利潤最大,最大利潤為1250.

)設(shè)捐贈后的利潤為 ()

,則二次函數(shù)的圖象開口向下,對稱軸,

根據(jù)題意得:第一天開始不能虧損,即;

利潤上升,即二次函數(shù)對稱軸應(yīng)在29.5的右側(cè),即

從而有,解得

注:由利潤上升得求解的,扣2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班從6名班干部中其中男生4人,女生2人,任選3人參加學(xué)校的義務(wù)勞動.

1設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;

2求男生甲或女生乙被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科考試中,從甲、乙兩個班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.

(Ⅰ)設(shè)甲、乙兩個班所抽取的10名同學(xué)成績方差分別為、,比較的大。ㄖ苯訉懗鼋Y(jié)果,不寫過程);

(Ⅱ)從甲班10人任取2人,設(shè)這2人中及格的人數(shù)為X,求X的分布列和期望;

(Ⅲ)從兩班這20名同學(xué)中各抽取一人,在已知有人及格的條件下,求抽到乙班同學(xué)不及格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分) 某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

級優(yōu)

級良

級輕度污染

級中度污染

級重度污染

級嚴(yán)重污染

該社團(tuán)將該校區(qū)在天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率

請估算年(以天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算);

)該校日將作為高考考場,若這兩天中某天出現(xiàn)級重度污染,需要凈化空氣費用元,出現(xiàn)級嚴(yán)重污染,需要凈化空氣費用元,記這兩天凈化空氣總費用為元,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,S1=-,an-4SnSn-1=0(n≥2).

(1) 若bn,求證:{bn}是等差數(shù)列;

(2) 求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場.已知AD//BC, 百米, 百米,廣場入口PAB上,且,根據(jù)規(guī)劃,過點P鋪設(shè)兩條相互垂直的筆直小路PM,PN(小路的寬度不計),點M,N分別在邊AD,BC上(包含端點),區(qū)域擬建為跳舞健身廣場, 區(qū)域擬建為兒童樂園,其它區(qū)域鋪設(shè)綠化草坪,設(shè).

(1)求綠化草坪面積的最大值;

(2)現(xiàn)擬將兩條小路PNM,PN進(jìn)行不同風(fēng)格的美化,PM小路的美化費用為每百米1萬元,PN小路的美化費用為每百米2萬元,試確定M,N的位置,使得小路PM,PN的美化總費用最低,并求出最小費用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求的值;

(2)若函數(shù)的圖象與直線沒有交點,求b的取值范圍;

(3)設(shè),若函數(shù)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為直角梯形的四棱錐PABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,ACBDE,AD=2,AB=2,BC=6,求證:平面PBD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求證:當(dāng)x>1時,f(x)>0成立;

(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案