如圖1-1-5,長(zhǎng)方體ABCD—A1B1C1D1中,AB=3,BC=2,BB1=1,由A到C1在正方體表面上的最短距離為多少?

           圖1-1-5

思路解析:解本題可將長(zhǎng)方體表面展開,利用在平面內(nèi)兩點(diǎn)間的線段長(zhǎng)是兩點(diǎn)間的最短距離來解答.通過展開表面,將空間問題轉(zhuǎn)化為平面問題.

答案:如圖1-1-6展開:

                 圖1-1-6

AC1=;

 如圖1-1-7展開:

                             圖1-1-7

AC1=;

如圖1-1-8展開:

       圖1-1-8

AC1=.

由此A到C1在正方體表面上的最短距離為.

  綠色通道:解答空間幾何體表面上兩點(diǎn)間最短線路問題,一般都是將空間幾何體表面展開,轉(zhuǎn)化為求平面內(nèi)兩點(diǎn)間線段長(zhǎng),這體現(xiàn)了數(shù)學(xué)中的轉(zhuǎn)化思想.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐A-BCDE中,底面BCDE是直角梯形,∠BED=90°,BE∥CD,AB=6,BC=5,
CD
BE
=
1
3
,側(cè)面ABE⊥底面BCDE,∠BAE=90°.
(1)求證:平面ADE⊥平面ABE;
(2)過點(diǎn)D作面α∥平面ABC,分別于BE,AE交于點(diǎn)F,G,求△DFG的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名一模)如圖所示,角A為鈍角,且cosA=-
4
5
,點(diǎn)P,Q分別在角A的兩邊上.
(1)已知AP=5,AQ=2,求PQ的長(zhǎng);
(2)設(shè)∠APQ=α,∠AQP=β,且cosα=
12
13
,求sin(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕頭二模)給出平面區(qū)域G,如圖所示,其中A(5,3),B(2,1),C(1,5).若使目標(biāo)函數(shù)P=ax+y(a>0)取得最大值的最優(yōu)解有無窮多個(gè),則a的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知長(zhǎng)方體ABCD-A′B′C′D′中,AB=2
3
,BC=2
3
,AA′=2

(1)CD和B′D′所成的角是多少度;
(2)BB′和CD′所成的角是多少度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,角A為鈍角,且sinA=
3
5
,點(diǎn)P、分別在角A的兩邊上.
(1)已知AP=5,AQ=2,求PQ的長(zhǎng);
(2)設(shè)∠APQ=α,∠AQP=β,且cosα=
12
13
,求sin(2α+β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案