分析 由已知利用三角形面積公式可求sinB的值,結(jié)合B為銳角,利用同角三角函數(shù)基本關(guān)系式可求cosB,進而利用余弦定理可求AC的值.
解答 解:∵AB=2$\sqrt{3}$,BC=3,面積S△ABC=$\frac{1}{2}$AB•BC•sinB=$\frac{1}{2}×$2$\sqrt{3}$×3×sinB=3$\sqrt{2}$,
∴解得:sinB=$\frac{\sqrt{6}}{3}$,
∵由題意,B為銳角,可得:cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{\sqrt{3}}{3}$,
∴由余弦定理可得:AC=$\sqrt{A{B}^{2}+B{C}^{2}-2AB•BC•cosB}$=$\sqrt{12+9-2×2\sqrt{3}×3×\frac{\sqrt{3}}{3}}$=3.
故答案為:3.
點評 本題主要考查了三角形面積公式,同角三角函數(shù)基本關(guān)系式,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{49π}{12}$ | B. | $\frac{35π}{6}$ | C. | $\frac{25π}{6}$ | D. | $\frac{17π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{\sqrt{3}}{2}$,1) | B. | [$\frac{\sqrt{6}}{3}$,1) | C. | (0,$\frac{\sqrt{3}}{2}$] | D. | (0,$\frac{\sqrt{6}}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com