已知命題
p1:函數(shù)y=2x-2-x在R上為增函數(shù),
p2:函數(shù)y=2x+2-x在R上為減函數(shù),
則在命題q1:p1∨p2,q2:p1∧p2,q3:(p1)∨p2和q4:p1∧(p2)中,真命題是(  )
A.q1,q3  B.q2,q3  C.q1,q4  D.q2,q4
C
方法一:函數(shù)y=2x-2-x是一個增函數(shù)與一個減函數(shù)的差,故函數(shù)y=2x-2-x在R上為增函數(shù),p1是真命題;
而對p2:y'=2xln2-ln2=ln2×(2x-),
當(dāng)x∈[0,+∞)時,2x,又ln2>0,所以y'≥0,函數(shù)單調(diào)遞增;同理得當(dāng)x∈
(-∞,0)時,函數(shù)單調(diào)遞減,故p2是假命題.由此可知,q1真,q2假,q3假,q4真.
方法二:p1是真命題同方法一;由于2x+2-x≥2=2,故函數(shù)y=2x+2-x在R上存在最小值,故這個函數(shù)一定不是R上的單調(diào)函數(shù),故p2是假命題.由此可知, q1真,q2假,q3假,q4真.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

命題“"x∈N,x2≠x”的否定是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)命題p:?a>0,a≠1,函數(shù)f(x)=ax-x-a有零點(diǎn).則¬p: ________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

命題“,使得”的否定是(  )
A.,都有B.不存在,使
C.都有D.使

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

命題“所有自然數(shù)的平方都是正數(shù)”的否定為 (     )
A.所有自然數(shù)的平方都不是正數(shù)
B.有的自然數(shù)的平方是正數(shù)
C.至少有一個自然數(shù)的平方是正數(shù)
D.至少有一個自然數(shù)的平方不是正數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題正確的個數(shù)是(  )
①已知復(fù)數(shù),在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第四象限;
②若是實(shí)數(shù),則“”的充要條件是“”;
③命題P:“”的否定P:“”;
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

命題“”的否定是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

命題“x∈R,x2+ax+1<0”的否定是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知命題,;命題,,則下列命題中為真命題的是:(   )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案