(2012•泰州二模)已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F1(2,0),離心率為e.
(1)若e=
2
2
,求橢圓的方程;
(2)設(shè)A,B為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF1的中點(diǎn)為M,BF1的中點(diǎn)為N,若原點(diǎn)O在以線段MN為直徑的圓上.
①證明點(diǎn)A在定圓上;
②設(shè)直線AB的斜率為k,若k
3
,求e的取值范圍.
分析:(1)利用離心率的計(jì)算公式e=
c
a
及b2=a2-c2即可得出橢圓的標(biāo)準(zhǔn)方程;
(2)利用①的結(jié)論,設(shè)出直線AB的方程與橢圓的方程聯(lián)立即可得出關(guān)于a、b與k的關(guān)系式,再利用斜率與a、b的關(guān)系及其不等式的性質(zhì)即可得出.
解答:解:(1)由e=
2
2
=
c
a
,c=2,得a=2
2
,b=
a2-c2
=2.
故所求橢圓方程為
x2
8
+
y2
4
=1

(2)設(shè)A(x1,y1),則B(-x1,-y1),故M(
x1+2
2
,
y1
2
)
N(
2-x1
2
,-
y1
2
)

①由題意,得
OM
ON
=0
.化簡,得
x
2
1
+
y
2
1
=4
,∴點(diǎn)A在以原點(diǎn)為圓心,2為半徑的圓上.
②設(shè)A(x1,y1),則
y1=kx1
x
2
1
a2
+
y
2
1
b2
=1
x
2
1
+
y
2
1
=4
得到
1
a2
+
k2
b2
=
1
4
(1+k2)

e=
c
a
=
2
a
b2=a2-c2=
4
e2
-4
,代入上式整理,得k2(2e2-1)=e4-2e2+1;
∵e4-2e2+1>0,k2>0,∴2e2-1>0,∴e>
2
2

k2=
e4-2e2+1
2e2-1
≥3.化簡,得
e4-8e2+4≥0
2e2-1>0
.解之,得
1
2
e2≤4-2
3
2
2
<e≤
3
-1

故離心率的取值范圍是(
2
2
,
3
-1]
點(diǎn)評(píng):熟練掌握橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、參數(shù)a、b、c的關(guān)系、中點(diǎn)坐標(biāo)公式、直線方程、離心率的計(jì)算公式、不等式的基本性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)已知角φ的終邊經(jīng)過點(diǎn)P(1,-2),函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象的相鄰兩條對(duì)稱軸之間的距離等于
π
3
,則f(
π
12
)
=
-
10
10
-
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)若拋物線y2=2px(p>0)上的點(diǎn)A(2,m)到焦點(diǎn)的距離為6,則p=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)若動(dòng)點(diǎn)P在直線l1:x-y-2=0上,動(dòng)點(diǎn)Q在直線l2:x-y-6=0上,設(shè)線段PQ的中點(diǎn)為M(x1,y1),且(x1-2)2+(y1+2)2≤8,則x12+y12的取值范圍是
[8,16]
[8,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)如圖,三棱柱ABC-A1B1C1中,D、E分別是棱BC、AB的中點(diǎn),點(diǎn)F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求證:C1E∥平面ADF;
(2)若點(diǎn)M在棱BB1上,當(dāng)BM為何值時(shí),平面CAM⊥平面ADF?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)已知z=(a-i)(1+i)(a∈R,i為虛數(shù)單位),若復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在實(shí)軸上,則a=
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案