已知圓A過(guò)點(diǎn),且與圓B:關(guān)于直線對(duì)稱.
(1)求圓A的方程;
(2)若HE、HF是圓A的兩條切線,E、F是切點(diǎn),求的最小值。
(3)過(guò)平面上一點(diǎn)向圓A和圓B各引一條切線,切點(diǎn)分別為C、D,設(shè),求證:平面上存在一定點(diǎn)M使得Q到M的距離為定值,并求出該定值.
(1) (2) (3)

試題分析:(1)求圓的方程即找到圓心和半徑. 由圓的標(biāo)準(zhǔn)方程可看出圓B的圓心, 圓A 與圓B 關(guān)于直線對(duì)稱可求出圓A的圓心.再由圓A 通過(guò)過(guò)點(diǎn)通過(guò)兩點(diǎn)距離公式求出半徑可求出圓A的標(biāo)準(zhǔn)方程.
(2) 求的最小值最好用一個(gè)變量來(lái)表示,表示長(zhǎng)度和夾角都與長(zhǎng)度有關(guān),所以設(shè),則由切割弦定理得,在直角三角形,則由二倍角公式可得,由數(shù)量積公式得,利用均值定理可求出最小值.
(3)切線長(zhǎng)到點(diǎn)距離和半徑表示出來(lái),再根據(jù)得到關(guān)于一個(gè)方程可知軌跡是一個(gè)圓,所以存在一個(gè)定點(diǎn)的距離為定值.
試題解析:
(1)設(shè)圓A的圓心A(a,b),由題意得:解得,
設(shè)圓A的方程為,將點(diǎn)代入得r=2
∴圓A的方程為:     (4分)
(2)設(shè),


當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值為   (9分)
(3)由(1)得圓A的方程為:,圓B:,由題設(shè)得,即,
∴化簡(jiǎn)得:
∴存在定點(diǎn)M()使得Q到M的距離為定值.   (14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓,直線
(1)判斷直線與圓C的位置關(guān)系;
(2)設(shè)與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
(3)若定點(diǎn)P(1,1)分弦AB為,求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線的漸近線與圓相切,則該雙曲線的離心率是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將直線x+y-1=0繞點(diǎn)(1,0)沿逆時(shí)針?lè)较蛐D(zhuǎn)15°得到直線l,則直線l與圓(x+3)2+y2=4的位置關(guān)系是(  )
A.相交B.相切C.相離D.相交或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線l:y=x+m與曲線y=有兩個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線與圓有兩個(gè)不同交點(diǎn)的一個(gè)充分不必要條件是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)點(diǎn)P(0,1)與圓相交的所有直線中,被圓截得的弦最長(zhǎng)時(shí)的直線方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在平面直角坐標(biāo)系中,圓的方程為,直線的方程為,則直線與圓的位置關(guān)系是(   )
A.相離B.相交C.相切D.相切或相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線lyk(x-2)+2與圓Cx2y2-2x-2y=0相切,則直線l的斜率為(  ).
A.-1B.-2 C.1 D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案