15.已知命題p:函數(shù)f(x)=|x+a|在(-∞,-1)上是單調(diào)函數(shù),命題q:函數(shù)$f(x)=\frac{{{x^2}+a}}{x}(a>0)$在(2,+∞)上遞增,若p且q為真命題,則實數(shù)a的取值范圍是( 。
A.(0,1]B.(0,2]C.[1,2]D.[1,3]

分析 分別求出p,q為真時a的范圍,求出A、B的交集即可.

解答 解:若函數(shù)f(x)=|x+a|在(-∞,-1)上是單調(diào)函數(shù),
則a≤1,故p為真時,a≤1,
若函數(shù)$f(x)=\frac{{{x^2}+a}}{x}(a>0)$在(2,+∞)上遞增,
則0<a≤1,故q為真時,0<a≤1,
若p且q為真命題,
則0<a≤1,
故選:A.

點評 本題考查了函數(shù)的單調(diào)性問題,考查復(fù)合命題的判斷,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.若$\frac{1}{a}<\frac{1}<0$,則下列不等式中,正確的不等式有( 。
A.a+b>abB.|a|>|b|C.a<bD.$\frac{a}+\frac{a}>2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.將$\frac{n(n+1)}{2}$(n≥4)個正實數(shù)排成如圖所示n行n列的三角形數(shù)陣(如圖):其中每一列的數(shù)成等比數(shù)列,并且所有的公比相等,從第三行起每一行的數(shù)成等差數(shù)列.已知a22=$\frac{3}{4},{a_{41}}=\frac{1}{8},{a_{43}}=\frac{1}{4}$,則a11+a22+…+ann=$3-\frac{n+3}{2^n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,若關(guān)于x的方程f2(x)-bf(x)+c=0(b,c∈R)有8個不同的實數(shù)根,則由點(b,c)確定的平面區(qū)域的面積為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知直線l1:x+a2y+1=0和直線l2:(a2+1)x-by+3=0.
(1)若b=-12,l1∥l2,求a的值;
(2)若l1⊥l2,則|a•b|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=4tanxsin($\frac{π}{2}$-x)cos(x-$\frac{π}{3}$)-$\sqrt{3}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合A={1,2},則A的真子集的個數(shù)為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知sinα=$\frac{3}{5}$,則cos(π-2α)=(  )
A.-$\frac{4}{5}$B.-$\frac{7}{25}$C.$\frac{7}{25}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)點P(x,y)(x≥0)為平面直角坐標系xOy中的一個動點(其中O為坐標原點),點P到定點M(0,$\frac{1}{2}$)的距離比點P到x軸的距離大$\frac{1}{2}$.
(1)求點P的軌跡方程;
(2)若直線l:y=kx與點P的軌跡相交于A,B兩點,且|AB|=2$\sqrt{6}$,求k的值.
(3)設(shè)點P的軌跡是曲線C,點Q(1,y0)是曲線C上的一點,求以Q為切點的曲線C的切線方程.

查看答案和解析>>

同步練習冊答案