A. | $\frac{8}{3}\sqrt{7}$ | B. | $\frac{16}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{16}{3}\sqrt{7}$ |
分析 求出拋物線的焦點(diǎn)坐標(biāo)F(1,0),用點(diǎn)斜式設(shè)出直線方程:y=$\sqrt{3}$(x-1)與拋物線方程聯(lián)解得一個(gè)關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系結(jié)合曲線的弦長(zhǎng)的公式,可以求出線段AB的長(zhǎng)度.
解答 解:根據(jù)拋物線y2=4x方程得:焦點(diǎn)坐標(biāo)F(1,0),
直線AB的斜率為k=tan60°=$\sqrt{3}$
由直線方程的點(diǎn)斜式方程,設(shè)AB:y=$\sqrt{3}$(x-1)
將直線方程代入到拋物線方程當(dāng)中,得:3(x-1)2=4x
整理得:3x2-10x+3=0
設(shè)A(x1,y1),B(x2,y2)
由一元二次方程根與系數(shù)的關(guān)系得:x1+x2=$\frac{10}{3}$,x1x2=1
所以弦長(zhǎng)|AB|=$\sqrt{1+3}•\sqrt{\frac{100}{9}-4}$=$\frac{16}{3}$.
故選B
點(diǎn)評(píng) 本題以拋物線為載體,考查了圓錐曲線的弦長(zhǎng)問(wèn)題,屬于中檔題.本題運(yùn)用了直線方程與拋物線方程聯(lián)解的方法,對(duì)運(yùn)算的要求較高.利用一元二次方程根與系數(shù)的關(guān)系和弦長(zhǎng)公式是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
(0,20] | 8 | 0.08 |
(20,40] | 8 | 0.08 |
(40,60] | 30 | 0.30 |
(60,80] | a | B |
(80,100] | 22 | 0.22 |
總計(jì) | M | N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8π}{3}$ | B. | $\frac{8\sqrt{2}π}{3}$ | C. | 32π | D. | 8π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=cos2x,x∈R | B. | y=$\frac{{e}^{x}-{e}^{-x}}{2}$,x∈R | C. | y=$sin|\frac{x}{2}|$,x?R | D. | y=x3+x,x?R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{2}{3}$,1] | B. | [$\frac{2}{3}$,+∞) | C. | [1,+∞) | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com