為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.今年暑假我校學(xué)生公寓建造了可使用15年的隔熱層,每厘米厚的隔熱層建造成本為4萬元.學(xué)生公寓每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
k2x+3
(0≤x≤10
,若不建隔熱層,每年能源消耗費(fèi)用為10萬元.設(shè)f(x)為隔熱層建造費(fèi)用與15年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式;
(2)我校做到了使總費(fèi)用f(x)達(dá)到最小,請你計(jì)算學(xué)生公寓隔熱層修建的厚度和總費(fèi)用的最小值.
分析:(1)根據(jù)不建隔熱層,每年能源消耗費(fèi)用為10萬元.我們可得C(0)=10,得k=30,進(jìn)而得到C(x)的解析式,建造費(fèi)用為C1(x)=4x,則根據(jù)隔熱層建造費(fèi)用與15年的能源消耗費(fèi)用之和為f(x),從而得到f(x)的表達(dá)式.
(2)由(1)中所求的f(x)的表達(dá)式,我們利用導(dǎo)數(shù)法,求出函數(shù)f(x)的單調(diào)性,然后根據(jù)函數(shù)單調(diào)性易求出總費(fèi)用f(x)的最小值.
解答:解:(1)由題意,當(dāng)x=0,C(x)=10,代入C(x)=
k
2x+3
,得k=30.…(3分)
所以f(x)=4x+15C(x)=4x+
450
2x+3
(0≤x≤10)…(6分)
(2)f(x)=4x+
450
2x+3
=4x+6+
450
2x+3
-6
=2(2x+3)+
450
2x+3
-6≥2
2(2x+3)•
450
2x+3
-6=54…(10分)
等號成立當(dāng)且僅當(dāng)2(2x+3)=
450
2x+3
即x=6.…(12分)
因此隔熱層修建6 cm時,總費(fèi)用f(x)達(dá)到最小,最小值為54元.…(13分)
f′(x)=4-
900
(2x+3)2
=
16(x+9)(x-6)
(2x+3)2
,當(dāng)x=6時f′(x)=0…(14分)
點(diǎn)評:本題主要考查了函數(shù)模型的選擇和應(yīng)用,在解決函數(shù)的實(shí)際應(yīng)用題,我們要經(jīng)過析題→建模→解!原四個過程,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
k3x+5
(0≤x≤10)
,若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(Ⅰ)求k的值及f(x)的表達(dá)式.
(Ⅱ)隔熱層修建多厚時,總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了在夏季降溫和冬季供暖時減少能源消耗,可在建筑物的外墻加裝不超過10厘米厚的隔熱層.某幢建筑物要加裝可使用20年的隔熱層.每厘米厚的隔熱層的加裝成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:厘米)滿足關(guān)系:C(x)=
k3x+5
.若不加裝隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層加裝費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式,并寫f(x)=的定義域;
(2)隔熱層加裝厚度為多少厘米時,總費(fèi)用f(x)=最?并求出最小總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
k
3x+5
(0≤x≤10)
,若不建隔熱層(即x=0時),每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值;
(2)求f(x)的表達(dá)式;
(3)利用“函數(shù)y=x+
a
x
(其中a為大于0的常數(shù)),在(0,
a
]
上是減函數(shù),在[
a
,+∞)
上是增函數(shù)”這一性質(zhì),求隔熱層修建多厚時,總費(fèi)用f(x)達(dá)到最小,并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了在夏季降溫和冬季供暖時減少能源損耗,一般都要在屋頂和外墻建造隔熱層.某建筑物要造可使用30年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能耗費(fèi)用W(單位:萬元)與隔熱層厚度x(單位:厘米)滿足關(guān)系W=
m3x+4
,(0≤x≤15),若不建隔熱層,每年能耗為10萬元.設(shè)f(x)為隔熱層的建造費(fèi)用與30年總計(jì)的能耗費(fèi)用之和.
(1)求m的值和f(x);
(2)當(dāng)x=4時,以隔熱層使用壽命30年計(jì)算,平均每年比不建隔熱層節(jié)約多少錢?

查看答案和解析>>

同步練習(xí)冊答案