【題目】從4名男生和2名女生中任選3人參加演講比賽,設(shè)隨機(jī)變量ξ表示所選3人中女生的人數(shù).

(1)求所選3人中女生人數(shù)ξ≤1的概率;

(2)求ξ的分布列及數(shù)學(xué)期望.

【答案】(1);(2)見解析

【解析】

(1)先求得ξ=2的概率,再利用對(duì)立事件的概率公式得到結(jié)果.

(2)由題意知ξ服從超幾何分布,隨機(jī)變量ξ表示所選3人中女生的人數(shù),ξ可能的取值為0,1,2,結(jié)合變量對(duì)應(yīng)的事件和超幾何分布的概率公式,寫出變量的分布列和數(shù)學(xué)期望.

(1)由題意知P(ξ=2)= ,則“所選3人中女生人數(shù)ξ≤1”的概率為.

(2)由題意知ξ服從超幾何分布,

隨機(jī)變量ξ表示所選3人中女生的人數(shù),ξ可能取的值為0,1,2.

∴ξ的分布列為

ζ

0

1

2

P

∴ξ的數(shù)學(xué)期望為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓為圓上任意一點(diǎn),過作圓的切線,分別交直線兩點(diǎn),連接,相交于點(diǎn),若點(diǎn)的軌跡為曲線.

(1)設(shè)直線的斜率分別為,求的值,并求曲線的方程;

(2)記直線與曲線有兩個(gè)不同的交點(diǎn),與直線交于點(diǎn),與直線交于點(diǎn),求的面積與的面積的比值的最大值及取得最大值時(shí)的值.

(注:在點(diǎn)處的切線方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì)一次性飲酒4.8兩誘發(fā)腦血管病的概率為0.04,一次性飲酒7.2兩誘發(fā)腦血管病的概率為0.16.已知某公司職員一次性飲酒4.8兩未誘發(fā)腦血管病,則他還能繼續(xù)飲酒2.4兩不誘發(fā)腦血管病的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從全校參加數(shù)學(xué)競(jìng)賽的學(xué)生的試卷中抽取一個(gè)樣本,考察競(jìng)賽的成績(jī)分布情況,將樣本分成5組,繪成頻率分布直方圖,圖中從左到右各小長(zhǎng)方形的高之比為,最右邊一組頻數(shù)是6,請(qǐng)結(jié)合直方圖提供的信息,解答下列問題:

1)樣本量是多少?

2)列出頻率分布表.

3)估計(jì)這次競(jìng)賽中,成績(jī)高于60分的學(xué)生占總?cè)藬?shù)的百分比.

4)成績(jī)落在哪個(gè)范圍內(nèi)的人數(shù)最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐, 平面, 點(diǎn)分別為的中點(diǎn),設(shè)直線與平面交于點(diǎn).

1已知平面平面,求證: .

2求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】物聯(lián)網(wǎng)(Internet of Things,縮寫:IOT)是基于互聯(lián)網(wǎng)、傳統(tǒng)電信網(wǎng)等信息承載體,讓所有能行使獨(dú)立功能的普通物體實(shí)現(xiàn)互聯(lián)互通的網(wǎng)絡(luò). 其應(yīng)用領(lǐng)域主要包括運(yùn)輸和物流、工業(yè)制造、健康醫(yī)療、智能環(huán)境(家庭、辦公、工廠)等,具有十分廣闊的市場(chǎng)前景. 現(xiàn)有一家物流公司計(jì)劃租地建造倉(cāng)庫(kù)儲(chǔ)存貨物,經(jīng)過市場(chǎng)調(diào)查了解到下列信息:倉(cāng)庫(kù)每月土地占地費(fèi)(單位:萬元),倉(cāng)庫(kù)到車站的距離(單位:千米,),其中成反比,每月庫(kù)存貨物費(fèi)(單位:萬元)與成正比;若在距離車站9千米處建倉(cāng)庫(kù),則分別為2萬元和7. 2萬元. 這家公司應(yīng)該把倉(cāng)庫(kù)建在距離車站多少千米處,才能使兩項(xiàng)費(fèi)用之和最?最小費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)f1x),f2x),hx),如果存在實(shí)數(shù)a,b使得hx=af1x+bf2x),那么稱hx)為f1x),f2x)的生成函數(shù).

1)函數(shù)f1x=x2x,f2x=x2+x+1hx=x2x+1,hx)是否為f1x),f2x)的生成函數(shù)?說明理由;

2)設(shè)f1x=1x,f2x=,當(dāng)a=b=1時(shí)生成函數(shù)hx),求hx)的對(duì)稱中心(不必證明);

3)設(shè)f1x=x,x≥2),取a=2b0,生成函數(shù)hx),若函數(shù)hx)的最小值是5,求實(shí)數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為奇函數(shù),為常數(shù).

1)求的值;

2)判斷函數(shù)上的單調(diào)性,并說明理由;

3)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案