13.已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為$({\sqrt{3},0})$,
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)求雙曲線C的離心率;
(3)求雙曲線C的漸近線方程.

分析 (1)設(shè)雙曲線的標(biāo)準(zhǔn)方程,由c=2,a=$\sqrt{3}$,b2=c2-a2=1,即可求得雙曲線的標(biāo)準(zhǔn)方程;
(2)由(1)即可求得雙曲線的離心率;
(3)根據(jù)漸近線方程,即可求得雙曲線C的漸近線方程.

解答 解:(1)由題意得設(shè)雙曲線的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,∵$c=2,a=\sqrt{3}$,
∴b2=c2-a2=4-3=1,
∴雙曲線的標(biāo)準(zhǔn)方程為$\frac{x^2}{3}-{y^2}=1$;
(2)由(1)得$c=2,a=\sqrt{3}$,
∴雙曲線的離心率為$e=\frac{c}{a}=\frac{2}{{\sqrt{3}}}=\frac{{2\sqrt{3}}}{3}$.
(3)由(1)得雙曲線的漸近線方程為$y=±\frac{{\sqrt{3}}}{3}x$.

點評 本題考查雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡單性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)y=$\sqrt{(2-a){x}^{2}-2(a-2)x+4}$的定義域為R,則實數(shù)a的取值范圍為[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),滿足f(2+x)=f(2-x),若函數(shù)y=f(x)在(0,4)上至少有一個零點,且f(0)=0,則函數(shù)y=f(x)在(-8,10]上的零點個數(shù)至少為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知公差不為0的等差數(shù)列{an}的首項a1為a(a∈R),且$\frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_4}$成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)對n∈N*,試比較$\frac{1}{a_2}+\frac{1}{a_4}+\frac{1}{a_8}+…+\frac{1}{{{a_{2^n}}}}$與$\frac{1}{a_1}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.若asinBcosC+csinBcosA=$\frac{1}{2}$b且a>b,則B=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$sinα=\frac{4}{5}$,$sinβ=-\frac{5}{13}$,$α∈({\frac{π}{2},π})$,$β∈({π,\frac{3}{2}π})$;求$sin({\frac{π}{4}-α})$,tan(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“0<x<5”是“-2<x<6”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=x2+mx+1(m∈R),g(x)=ex
(1)當(dāng)x∈[0,2]時,F(xiàn)(x)=f(x)-g(x)為增函數(shù),求實數(shù)m的取值范圍;
(2)設(shè)函數(shù)$G(x)=\frac{f(x)}{g(x)},H(x)=-\frac{1}{4}x+\frac{5}{4}$,若不等式G(x)≤H(x)對x∈[0,5]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知△ABC中,AB=$\sqrt{3}$,AC=1且B=30°,則△ABC的面積等于( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$ 或$\sqrt{3}$D.$\frac{\sqrt{3}}{4}$ 或$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊答案