【題目】已知函數(shù)f(x)=x|x+a|﹣ lnx.
(1)當(dāng)a=0時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)若a<0,討論函數(shù)f(x)的極值點(diǎn).

【答案】
(1)解:當(dāng)a=0時(shí),f(x)=x2 lnx,函數(shù)的定義域?yàn)椋?,+∞).

f′(x)=

令f′(x)>0,可得x> ,f′(x)>0,可得0<x<

∴函數(shù)f(x)的單調(diào)增區(qū)間是( ,+∞),單調(diào)減區(qū)間是(0,


(2)解:當(dāng)a<0時(shí),f(x)=

①x>﹣a時(shí),f′(x)= =0,可得x1= ,x2= <﹣a(舍去).

≤﹣a,即a≤﹣ ,f′(x)≥0,∴函數(shù)f(x)在(﹣a,+∞)上單調(diào)遞增;

>﹣a,即﹣ <a<0,則當(dāng)x∈(﹣a,x1)時(shí),f′(x)<0,x∈(x1,+∞),f′(x)>0,

∴f(x)在∈(﹣a,x1)上單調(diào)遞減,在(x1,+∞)上單調(diào)遞增.

②當(dāng)0<x<﹣a時(shí),f′(x)= =0,得﹣4x2﹣2ax﹣1=0.

記△=4a2﹣16.

△≤0,即﹣2≤a<0,f′(x)≤0,∴f(x)在(0,﹣a)上單調(diào)遞減;

△>0,即a<﹣2,f′(x)=0可得x3= ,x4= 且0<x3<x4<﹣a.

x∈(0,x3)時(shí),f′(x)<0,x∈(x3,x4)時(shí),f′(x)>0,x∈(x4,﹣a),f′(x)<0,

∴f(x)在(0,x3)上單調(diào)遞減,在(x3,x4)上單調(diào)遞增,在(x4,﹣a)上單調(diào)遞減,

綜上所述,a<﹣2時(shí),f(x)的極小值點(diǎn)為 ,極大值點(diǎn)為 ;﹣2≤a≤﹣ 時(shí),f(x)無(wú)極值點(diǎn);

<a<0時(shí),f(x)的極小值點(diǎn)為


【解析】(1)當(dāng)a=0時(shí),f(x)=x2 lnx,函數(shù)的定義域?yàn)椋?,+∞),求導(dǎo)數(shù),斷導(dǎo)數(shù)的符號(hào),即可判斷f(x)的單調(diào)性;(2)分類討論,利用極值的定義,即可討論函數(shù)f(x)的極值點(diǎn).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減),還要掌握函數(shù)的極值與導(dǎo)數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)中,設(shè)橢圓的左右兩個(gè)焦點(diǎn)分別為,過(guò)右焦點(diǎn)且與軸垂直的直線與橢圓相交,其中一個(gè)交點(diǎn)為.

(1)求橢圓的方程;

(2>已知經(jīng)過(guò)點(diǎn)且斜率為直線與橢圓有兩個(gè)不同的交點(diǎn),請(qǐng)問(wèn)是否存在常數(shù),使得向量共線?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是(

A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若且函數(shù)的值域?yàn)?/span>,的表達(dá)式;

(2)在(1)的條件下, 當(dāng)時(shí), 是單調(diào)函數(shù), 求實(shí)數(shù)k的取值范圍;

(3)設(shè), 為偶函數(shù), 判斷能否大于零?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, 是雙曲線的左右焦點(diǎn),點(diǎn)在雙曲線上,且,則下列結(jié)論正確的是( )

A. ,則雙曲線離心率的取值范圍為

B. ,則雙曲線離心率的取值范圍為

C. 則雙曲線離心率的取值范圍為

D. ,則雙曲線離心率的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合P={(x,y)||x|+|y|≤1,x∈R,y∈R},Q={(x,y)|x2+y2≤1,x∈R,y∈R},R={(x,y)|x4+y2≤1,x∈R,y∈R}則下列判斷正確的是(
A.PQR
B.PRQ
C.QPR
D.RPQ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最小正周期是,且當(dāng)時(shí),取得最大值3.

(1)求的解析式及單調(diào)增區(qū)間;

(2)若,且,求

(3)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,且是偶函數(shù),求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如下圖,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE。

填空:∠AEB的度數(shù)為____________;

線段AD、BE之間的數(shù)量關(guān)系是_________。

(2)拓展探究

如下圖,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=900, 點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE。請(qǐng)判斷∠AEB的度數(shù)及線段CM、AE、BE之間的數(shù)量關(guān)系,并說(shuō)明理由。

(3)解決問(wèn)題

如下圖,在正方形ABCD中,CD=。若點(diǎn)P滿足PD=1,且∠BPD=900,請(qǐng)直接寫(xiě)出點(diǎn)A到BP的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,則異面直線EF與BC所成角大小為

查看答案和解析>>

同步練習(xí)冊(cè)答案