精英家教網 > 高中數學 > 題目詳情
如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,BC=BB1,D為AB的中點.
(1)求證:BC1⊥平面AB1C;
(2)求證:BC1平面A1CD.
證明:(1)∵三棱柱ABC-A1B1C1為直三棱柱
∴CC1⊥平面ABC;
又∵AC?平面ABC
∴CC1⊥AC
又∵AC⊥BC,CC1∩BC=C
∴AC⊥平面B1C1CB
又∵B1C?平面B1C1CB
∴B1C⊥AC
又∵BC=BB1
∴平面B1C1CB為正方形,
∴B1C⊥BC1,又∵B1C∩AC=C
∴BC1⊥平面AB1C;
(2)連接BC1,連接AC1于E,連接DE,E是AC1中點,
D是AB中點,則DEBC1,
又DE?面CA1D1,BC1?面CA1D1
∴BC1面CA1D
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4(單位:cm),E為PA的中點.
(1)證明:DE平面PBC;
(2)證明:DE⊥平面PAB.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知四邊形ABCD中,∠B=∠D=90°,AD=CD=
6
,∠BAC=60°,E為AC的中點;現(xiàn)將△ACD沿對角線AC折起,使點D在平面ABC上的射影H落在BC上.
(1)求證:AB⊥平面BCD;
(2)求三棱錐D-ABE的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設AB=2,若H為線段PD上的動點,EH與平面PAD所成的最大角的正切值為
6
2
,求此時異面直線AE和CH所成的角.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面是AB=2,BC=3的矩形,側面PAB是等邊三角形,且側面PAB⊥底面ABCD.
(Ⅰ)求證:面PAD⊥面PAB.
(Ⅱ)求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,AB⊥側面BB1C1C,已知BB1=2,AB=
2
,BC=1,∠BCC1=
π
3

(1)求證:C1B⊥平面ABC;
(2)試在棱CC1(不包含端點C,C1)上確定一點E的位置,使得EA⊥EB1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,ABCD,AD⊥DC,PD=AD=DC=2AB,則異面直線PA與BC所成角的余弦值為( 。
A.
15
5
B.
10
5
C.-
10
5
D.
10
4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點,且BF⊥平面ACE.
(Ⅰ)求證AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的大;
(Ⅲ)求點D到平面ACE的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在長方形AA1B1B中,AB=2AA1,C,C1分別AB,A1B1是的中點(如圖1).將此長方形沿CC1對折,使平面AA1C1C⊥平面CC1B1B(如圖2),已知D,E分別是A1B1,CC1的中點.
(1)求證:C1D平面A1BE;
(2)求證:平面A1BE⊥平面AA1B1B.

查看答案和解析>>

同步練習冊答案