【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,若直線的參數(shù)方程為(為參數(shù), 為的傾斜角),曲線的極坐標(biāo)方程為,射線, , 與曲線分別交于不同于極點(diǎn)的三點(diǎn).
(1)求證: ;
(2)當(dāng)時(shí),直線過(guò)兩點(diǎn),求與的值.
【答案】(I) 見(jiàn)解析;(II) , .
【解析】試題分析:(I)利用極坐標(biāo)方程,可分別求得值,再利用三角恒等變形可證明所給等式;(2)先利用極坐標(biāo)方程求出兩點(diǎn)的極坐標(biāo),再轉(zhuǎn)化為直角坐標(biāo)系下的坐標(biāo),用直線方程的兩點(diǎn)式可得直線方程,進(jìn)一步得與的值.
試題解析:(I)證明:依題意, , , ,
則.
(II) 解:當(dāng)時(shí),
點(diǎn)的極坐標(biāo)為,
點(diǎn)的極坐標(biāo)為,
化為直角坐標(biāo),即, ,
則直線的方程為,
所以, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓Cx2+y2+2x﹣4y+3=0
(1)已知不過(guò)原點(diǎn)的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)求經(jīng)過(guò)原點(diǎn)且被圓C截得的線段長(zhǎng)為2的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),直線的方程為,點(diǎn)是拋物線上到直線距離最小的點(diǎn),點(diǎn)是拋物線上異于點(diǎn)的點(diǎn),直線與直線交于點(diǎn),過(guò)點(diǎn)與軸平行的直線與拋物線交于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求證:直線恒過(guò)定點(diǎn);
(3)在(2)的條件下過(guò)向軸做垂線,垂足為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正△ABC三個(gè)頂點(diǎn)都在半徑為2的球面上,球心O到平面ABC的距離為1,點(diǎn)E是線段AB的中點(diǎn),過(guò)點(diǎn)E作球O的截面,則截面面積的最小值是( 。
A.
B.2π
C.
D.3π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn).那么異面直線OE和FD1所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位用2160萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).
(1)寫(xiě)出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐A﹣BCD中,AB⊥平面BCD,BC⊥CD,且AB=3,BD=4,則三棱錐A﹣BCD外接球的半徑為( 。
A.2
B.3
C.4
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)求曲線與焦點(diǎn)的極坐標(biāo),其中.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com