【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,若直線的參數(shù)方程為為參數(shù), 的傾斜角),曲線的極坐標(biāo)方程為,射線, , 與曲線分別交于不同于極點(diǎn)的三點(diǎn).

(1)求證:

(2)當(dāng)時(shí),直線過(guò)兩點(diǎn),求的值.

【答案】(I) 見(jiàn)解析;(II) ,

【解析】試題分析:(I)利用極坐標(biāo)方程,可分別求得值,再利用三角恒等變形可證明所給等式;(2)先利用極坐標(biāo)方程求出兩點(diǎn)的極坐標(biāo),再轉(zhuǎn)化為直角坐標(biāo)系下的坐標(biāo),用直線方程的兩點(diǎn)式可得直線方程,進(jìn)一步得的值.

試題解析:(I)證明:依題意, , , ,

(II) 解:當(dāng)時(shí),

點(diǎn)的極坐標(biāo)為,

點(diǎn)的極坐標(biāo)為,

化為直角坐標(biāo),即,

則直線的方程為,

所以,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓Cx2+y2+2x﹣4y+3=0
(1)已知不過(guò)原點(diǎn)的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)求經(jīng)過(guò)原點(diǎn)且被圓C截得的線段長(zhǎng)為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),直線的方程為,點(diǎn)是拋物線上到直線距離最小的點(diǎn),點(diǎn)是拋物線上異于點(diǎn)的點(diǎn),直線與直線交于點(diǎn),過(guò)點(diǎn)軸平行的直線與拋物線交于點(diǎn).

(1)求點(diǎn)的坐標(biāo);

(2)求證:直線恒過(guò)定點(diǎn);

(3)在(2)的條件下過(guò)軸做垂線,垂足為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正△ABC三個(gè)頂點(diǎn)都在半徑為2的球面上,球心O到平面ABC的距離為1,點(diǎn)E是線段AB的中點(diǎn),過(guò)點(diǎn)E作球O的截面,則截面面積的最小值是( 。

A.
B.2π
C.
D.3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn).那么異面直線OE和FD1所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位用2160萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).
(1)寫(xiě)出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐A﹣BCD中,AB⊥平面BCD,BC⊥CD,且AB=3,BD=4,則三棱錐A﹣BCD外接球的半徑為( 。

A.2
B.3
C.4
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)求曲線焦點(diǎn)的極坐標(biāo),其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案