設奇函數(shù)定義在上,其導函數(shù)為,且,當時,,則關于的不等式的解集為      

試題分析:令則當時,所以當時,函數(shù)單調(diào)減. 又為奇函數(shù),所以函數(shù)為偶函數(shù). 而當時,不等式等價于所以,根據(jù)偶函數(shù)性質(zhì)得到
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某投資公司計劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預測,A產(chǎn)品的利潤y1與投資金額x的函數(shù)關系為y1=18-,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關系為y2(注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某公司欲建連成片的網(wǎng)球場數(shù)座,用288萬元購買土地20000平方米,每座球場的建筑面積為1000平方米,球場每平方米的平均建筑費用與所建的球場數(shù)有關,當該球場建n座時,每平方米的平均建筑費用表示,且(其中),又知建5座球場時,每平方米的平均建筑費用為400元.
(1)為了使該球場每平方米的綜合費用最。ňC合費用是建筑費用與購地費用之和),公司應建幾座網(wǎng)球場?
(2)若球場每平方米的綜合費用不超過820元,最多建幾座網(wǎng)球場?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某家具廠生產(chǎn)一種兒童用組合床柜的固定成本為20000元,每生產(chǎn)一組該組合床柜需要增加投入100元,已知總收益滿足函數(shù):,其中是組合床柜的月產(chǎn)量.
(1)將利潤元表示為月產(chǎn)量組的函數(shù);
(2)當月產(chǎn)量為何值時,該廠所獲得利潤最大?最大利潤是多少?(總收益=總成本+利潤).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將一個長寬分別是a,b(0<b<a)的鐵皮的四角切去相同的正方形,然后折成一個無蓋的長方體的盒子,若這個長方體的外接球的體積存在最小值,則的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=ln(-3x)+1,則f(lg 2)+f=(  ).
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=,x∈[-1,1],函數(shù)g(x)=[f(x)]2-2af(x)+3的最小值為h(a).
(1)求h(a);
(2)是否存在實數(shù)mn同時滿足下列條件:
mn>3;
②當h(a)的定義域為[n,m]時,值域為[n2m2]?若存在,求出m、n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于函數(shù),若存在實數(shù),使得成立,則實數(shù)的取值范圍是(      ) w
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出以下四個結(jié)論:
①函數(shù)的對稱中心是
②若不等式對任意的x∈R都成立,則;
③已知點與點Q(l,0)在直線兩側(cè),則;
④若將函數(shù)的圖像向右平移個單位后變?yōu)榕己瘮?shù),則的最小值是
其中正確的結(jié)論是____________(寫出所有正確結(jié)論的編號).

查看答案和解析>>

同步練習冊答案