已知且不等式|f(x)|>2的解集為求f(x)的解析式______.
【答案】分析:先將條件:“不等式|f(x)|>2”進行轉(zhuǎn)化整理,最后得到一個關(guān)于x的一元二次不等式,再利用方程根與系數(shù)的關(guān)系即可求得a,b的值即可.
解答:解:由|f(x)|>2得|ax|>2|ax+b|
∴2|ax+b|-|ax|<0,
不等式兩邊同乘以2|ax+b|+|ax|整理得:
3a2x+8abx+4b2<0此不等式的解集為

∴a=b≠0,
∴f(x)=
故答案為:
點評:本題主要考查了待定系數(shù)法求函數(shù)解析式、絕對值不等式的解法和方程的思想方法,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當x∈(-∞,0)時不等式f(x)+xf′(x)<0成立,若a=50.5f(50.5),b=(logπ3)f(logπ3),c=(log3
1
27
)f(log3
1
27
),則a,b,c的大小關(guān)系是
b<a<c
b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx-1,且不等式|f(x)|≤2|2x2-1|的實數(shù)x恒成立,數(shù)列{an}滿足a1=1,an+1=f(
an+1
)(n∈N*)

(1)求a,b的值;
(2)求數(shù)列{an}的通項公式;
(3)求證
a1
a2
+
a2
a3
+…+
an
an+1
n
2
-
11
35
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)已知函數(shù)y=f(x)在區(qū)間[a,b]上均有意義,且A、B是其圖象上橫坐標分別為a、b的兩點.對應于區(qū)間[0,1]內(nèi)的實數(shù)λ,取函數(shù)y=f(x)的圖象上橫坐標為x=λa+(1-λ)b的點M,和坐標平面上滿足
MN
MA
+(1-λ)
MB
的點N,得
MN
.對于實數(shù)k,如果不等式|MN|≤k對λ∈[0,1]恒成立,那么就稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x2+x在[1,2]上“k階線性近似”,則實數(shù)k的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,(a≠0),且不等式f(x)<2x的解集為(-1,2).
(1)方程f(x)+3a=0有兩個相等的實根,求f(x)的解析式.
(2)f(x)的最小值不大于-3a,求實數(shù)a的取值范圍.
(3)a如何取值時,函數(shù)y=f(x)-(x2-ax+m)(|m|>1)存在零點,并求出零點.

查看答案和解析>>

同步練習冊答案