下列命題:
中,若,則;
②若A,B,C為的三個內(nèi)角,則的最小值為
③已知,則數(shù)列中的最小項為;
④若函數(shù),且,則
⑤函數(shù)的最小值為
其中所有正確命題的序號是        
②③

試題分析:①△ABC中,若A<B,則a<b,由正弦定理
得0<sinA<sinB,又cos2A=1-2sin2A,cos2B=1-2sin2B,
所以cos2A>cos2B,①錯誤.
②因為A+B+C=π,α=A,β=B+C,α+β=π
所以=1,
原式等價于
= ,
當且僅當,即α=2β時取等號.所以②正確.
③因為=2+,因為1≤≤3,
所以設t=,則1≤t≤3.因為函數(shù)y=t+-2在區(qū)間(0,4)上單調(diào)遞減,所以在[1,3]上單調(diào)遞減,因此,當t=3時,函數(shù)有最小值3+-2=,則對應數(shù)列{an}中的最小項為,所以③正確.
④令g(x)=,則函數(shù)g(x)的幾何意義為曲線上點與原點連線斜率的大。深}意可知,分別看作函數(shù)f(x)=log2(x+1)圖象上的點(a,f(a)),(b,f(b)),(c,f(b))與原點連線的斜率,由圖象可知,,所以④錯誤.
⑤因為,,問題轉化成點P(x,0)到A(1,2),B(2,3)距離之和的最小值。原式等價為|PA|+|PB|的最小值,找出點A關于x軸的對稱點D(1,-2).
則|PA|+|PB|=|PD|+|PB|≥|PD|,所以最小值為|PD|=
所以,⑤錯誤.故答案為:②③.
點評:難題,本題綜合性較強,難度較大。靈活的對問題實施轉化,是解題的關鍵。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

中,角的對邊分別為,且滿足
(1)求證:;
(2)若的面積,,的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

受日月引力的作用,海水會發(fā)生漲落,這種現(xiàn)象叫潮汐. 在通常情況下,船在海水漲潮時駛進航道,靠近碼頭,卸貨后返回海洋.某港口水的深度是時間,單位:的函數(shù),記作:,下表是該港口在某季每天水深的數(shù)據(jù):

經(jīng)過長期觀察的曲線可以近似地看做函數(shù)的圖象.
(Ⅰ)根據(jù)以上數(shù)據(jù),求出函數(shù)的近似表達式;
(Ⅱ)一般情況下,船舶航行時船底離海底的距離為以上時認為是安全的(船舶停靠時,船底只需不碰到海底即可),某船吃水深度(船底離水面的距離)為,如果該船想在同一天內(nèi)安全進出港,問它至多能在港內(nèi)停留多長時間(忽略進出港所需時間)?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中,分別為角的對邊,若的面積為,則的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

的內(nèi)角的對邊分別為,且     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在△中,已知,D是BC邊上一點,AD=10,AC=14,DC=6,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知b=2,B=,C=,則△ABC的面積為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在△ABC中,角A、B、C所對的邊分別為a、b、c,且cosA=.
(1)求+cos2A的值;
(2)若a=,求bc的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中,角、所對的邊分別為、、,若,,則(      )
A.B.C.D.

查看答案和解析>>

同步練習冊答案